the answer is n = -3
*********************************************************
The point P(-2, 4, -7) is located in R³ as shown on the coordinate axes below. P(-2,4,-7) a. Determine the coordinates of points A, B, C, D, E, and F. b. What is the equation of the plane containing the points B, C, E, and P?
The coordinates of points A, B, C, D, E, and F are as follows:
A: (-2, 0, 0)
B: (-2, 0, -7)
C: (0, 4, -7)
D: (0, 4, 0)
E: (0, 0, -7)
F: (0, 0, 0)
What is the equation of the plane that contains points B, C, E, and P?
The equation of the plane containing points B, C, E, and P can be determined using the formula for the equation of a plane. We can select any three non-collinear points from the four given points (B, C, E, and P) and use them to find the equation. Let's choose points B, C, and E. We first find two vectors on the plane: BC → (0, 4, -7) - (-2, 0, -7) = (2, 4, 0) and BE → (0, 0, -7) - (-2, 0, -7) = (2, 0, 0). Taking the cross product of BC and BE, we get the normal vector N → (0, 14, 8). Now, using the coordinates of point B and the normal vector N →, we can write the equation of the plane as 0x + 14y + 8z + d = 0. Substituting the coordinates of point B into the equation, we find that d = -56. Therefore, the equation of the plane containing points B, C, E, and P is 14y + 8z - 56 = 0.
Learn more about coordinates of points
brainly.com/question/27755743
#SPJ11
How do you get the functions to those 3 tables?
What are the functions of the three tables?
The values of the function table for the equations f(x) = 2x + 13, f(x) = x² + 15, f(x) = -x² + 9x + 11 are represented below
Function TableA function table is a table that shows which coordinates should be plotted in the coordinate system, so that you can draw the graph of the function.
In the first equation;
f(x) = 2x + 13
x = -1
f(-1) = 2(-1) + 13
f(-1) = -2 + 13
f(-1) = 11
x = 0
f(0) = 2(0) + 13
f(0) = 13
when x = 1
f(1) = 2(1) + 13
f(1) = 15
x = 2
f(2) = 2(2) + 13
f(2) = 19
In the second equation;
f(x) = x² + 15
when x = (-2)² + 15
f(-2) = 19
when x = 0
f(0) = 15
When x = 1
f(1) = (1)² + 15
f(1) = 16
When x = 3
f(3) = (3)² + 15
f(3) = 24
In the third equation;
f(x) = -x² + 9x + 11
when x = -4
f(-4) = -(-4)² + 9(-4) + 11
f-4) = -41
when x = -2
f(-2) = -11
When x = 0
f(0) = 11
When x = 2
f(2) = 25
Learn more on function table here;
https://brainly.com/question/3632175
#SPJ1
Place elementary school is raising money. they raise $90 a week. how long will it take to raise $900?
Answer: It will take 10 weeks! :)
Step-by-step explanation:
So let's look at this together.
The question states that they raise 90$ per week.
There's two ways you can do this
You can multiply,
Think, what times 90 will equal 900? The answer is 10!
90 x 10= 900!
(if you need help with multiplication, let me know)
Or you can divide.
900/90=10!
(if you need help with division, let me know)
So it would take, in total, 10 weeks to raise 900 dollars.
Determine the intercepts of the line. y=−3x+12
Answer:
Step-by-step explanation:
y=−3x+12
when x=0 then y=12 , the y intercept is (0,12)
when y=0 then -3x+12=0, -3x=-12, x=12/3=4
x intercept =(4,0)
The x and y intercepts of the line are (4, 0) and (0, 12).
What is a y-intercept?In Maths, an intercept is a point on the y-axis, through which the slope of the line passes. It is the y-coordinate of a point where a straight line or a curve intersects the y-axis. This is represented when we write the equation for a line, y = mx+c, where m is slope and c is the y-intercept.
To find the x-intercept, substitute in 0 for y and solve for x. To find the y-intercept, substitute in 0 for x and solve for y.
When y=0, we get
x=4
So, x-intercept is (4, 0)
When x=0, we get
y=12
So, y-intercept is (0, 12)
Therefore, the x and y intercepts of the line are (4, 0) and (0, 12).
To learn more about the y-intercept visit:
brainly.com/question/14180189.
#SPJ2
what is square foot of -100
Answer:
10
Step-by-step explanation:
the square root of 100 is 10
√100=10
Answer: 10 + i
thats answer
calculate the number of waffles produced if you start with 15 eggs, assuming you have enough of all other ingredients? given: 4 cups flour 6 eggs 2 tbsp oil 8 waffles
The number of waffles can be made from 15 eggs are, 20 waffles.
the waffles can be calculates as follows
4 cups of fluor + 6 eggs +2 tbsp oil = 8 waffles
we need 6 eggs to make 8 waffles
So, the waffles can we make from 15 eggs = \(\frac{8}{6} X 15 = 20\) waffles
Hence, the number of waffles can be made from 15 eggs are 20 waffles.
Learn more about this equation at
https://brainly.com/question/14275434
#SPJ1
A simple random sample of 49 8th graders at a large suburban middle school indicated that 82% of them are involved with some type of after school activity. Find the 99% confidence interval that estimates the proportion of them that are involved in an after school activity.
Answer:
0.142
Step-by-step explanation:
From the question, we identify the following parameters;
n = 49
p = 82% = 82/100 = 0.82
alpha, α = 1-0.99 = 0.01
Zα/2 = Z_0.005 = 2.575
margin of error = Zα/2 * √( p(1-p)/n)
Margin of error = 2.575 * √(0.82)(1-0.82)/49
Margin of error =0.1416005 which is approximately 0.142
The image below represents a 12 x 16 room with an 8 x 10 piece of linoleum centered in the room. The yellow and blue rectangles extend the length of their respective sides. Where these two rectangles overlap, there is a green rectangle. In the paragraph box, explain why the total colored area is 62 square feet.
The total area of the colored rectangles is 62 square feet
How to explain why the total colored area is 62 square feet?Given that: the room is 12 x 16 with an 8 x 10 piece of linoleum centered in the room
The shape will be treated as a composite rectangle. Thus, the room can be divided into smaller rectangles as shown in the image attached.
For the Yellow part:
Length(L) = 8 + 2 = 10 feet
width(W) = 3 feet
Area(A) = L × W
A = 10 × 3 = 30 square feet
For the Blue part:
Length(L) = 2 feet
Width(W) = 3 + 10 = 13feet
Area(A) = L × W
A = 13 × 2 = 26 square feet
For the Green part:
Length(L) = 2 feet
width(W) = 3 feet
Area(A) = L × W
A = 2 × 3 = 6 square feet
Total colored area = Area of Yellow + Area of Blue + Area of Green
Total colored area = 30 + 26 + 6 = 62 square feet
Therefore, the total colored area is 62 square feet
Learn more about area of composite rectangle on:
brainly.com/question/26992044
#SPJ1
Patricia bought 4 apples and 9 bananas for $12. 70. Jose bought 8 apples and 11 bananas for $17. 70 at the same grocery store.
What is the cost of one apple?
The cost of one apple is $0.70.
Let's assume that the cost of one apple is "a" dollars and the cost of one banana is "b" dollars. We can create two equations based on the information given:
4a + 9b = 12.70 ...(1)
8a + 11b = 17.70 ...(2)
To solve for "a", we can use elimination method by multiplying equation (1) by 8 and equation (2) by -4, so that the coefficients of "a" in both equations will be equal and opposite:
32a + 72b = 101.60
-32a - 44b = -70.80
Adding these two equations, we get:
28b = 30.80
Simplifying and solving for "b", we get:
b = 1.10
Now, we can substitute the value of "b" in equation (1) and solve for "a":
4a + 9(1.10) = 12.70
4a + 9.90 = 12.70
4a = 2.80
a = 0.70
Therefore, the cost of one apple is $0.70.
Learn more about cost ,
https://brainly.com/question/30045916
#SPJ4
Answer two questions about Equations AAA and BBB: \begin{aligned} A.&&\dfrac x4+1&=-3 \\\\ B.&&x+4&=-12 \end{aligned} A. B. 4 x +1 x+4 =−3 =−12 1) How can we get Equation BBB from Equation AAA? Choose 1 answer: Choose 1 answer: (Choice A) A Rewrite one side (or both) using the distributive property (Choice B) B Rewrite one side (or both) by combining like terms (Choice C) C Multiply/divide only one side by a non-zero constant (Choice D) D Multiply/divide both sides by the same non-zero constant 2) Based on the previous answer, are the equations equivalent? In other words, do they have the same solution? Choose 1 answer: Choose 1 answer: (Choice A) A Yes (Choice B) B No
The given equations are as follows
\(\begin{aligned} A.&&\dfrac x4+1&=-3 \\\\ B.&&x+4&=-12 \end{aligned}\)
(1) First, multiply both sides of equation A by 4, we have
\(4\times\left(\frac{x}{4} +1\right)=4\times(-3)\)
Then, rewrite the left-hand side of the above equation by using the distributive property, we have
\(4\times\frac{x}{4}+4\times1=4(-3)\)
\(\Rightarrow x+4=-12\)
This is the required equation B.
In this way, first use choice D: Multiply both sides by the same non-zero constant, i.e 4.
Then, apply choice A to solve the equation, i.e using the distributive property to solve the left-hand side of the equation.
(2) In the previous answer, equation B has been derived from equation A, hence, both the equations are equivalent.
As both the equations are the same, so both will have the same solution.
Yes, they have the same solution.
The quantity y varies directly as x and inversely as z. When x is 10 and z is 4, y is 15. What is y when x is 20 and z is 6?
6
20
27
30
\(\qquad \qquad \textit{combined proportional variation} \\\\ \begin{array}{llll} \textit{\underline{y} varies directly with \underline{x}}\\ \textit{and inversely with }\underline{z^5} \end{array} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}x}{z^5}~\hfill } \\\\[-0.35em] ~\dotfill\)
\(\begin{array}{llll} \textit{"y" varies}\\ \textit{directly with "x"}\\ \textit{inversely with "z"} \end{array}\qquad y=\cfrac{kx}{z}\hspace{5em}\textit{we also know that} \begin{cases} x=10\\ z=4\\ y=15 \end{cases} \\\\\\ 15=\cfrac{k(10)}{4}\implies \cfrac{4}{10}\cdot 15=k\implies 6=k\hspace{8em}\boxed{y=\cfrac{6x}{z}} \\\\\\ \textit{when x = 20 and z = 6, what's "y"?}\qquad y=\cfrac{6(20)}{6}\implies y=20\)
Answer:
I think is 500 hope it helps
what is an equation of the line the passes through the point -8,0 and is parallel to the line x+2y=14
Answer:
y = -\(\frac{1}{2}\)x - 4
Step-by-step explanation:
If a line is parallel then it has the same slope as your original line, so solve your equation for y, 2y = -x +14, divide both sides by 2 so y = - 1/2 x + 7
So your new parallel line has a slope of -1/2, since it passes through (-8,0) now find your y-intercept, so y = -1/2 x + 7 is 0 = -1/2(-8) + b so 0 = 4 + b
so b = -4, so put it all together
y = -\(\frac{1}{2}\)x - 4
Find the best linear approximation, L(x), to f(x) = e' near x = 0. i.L(x) = x+1 ii. L(x) = x iii. LX) = c + 1
The best linear approximation to the function f(x) = e^x near x = 0 is L(x) = x + 1.
The given function is f(x) = e^x near x = 0.
To find the best linear approximation, L(x), we use the formula:
L(x) = f(a) + f'(a)(x-a),
where a is the point near which we are approximating.
Let a = 0, so that a is near the point x = 0.
f(a) = f(0) = e^0 = 1
f'(x) = d/dx (e^x) = e^x;
so f'(a) = f'(0) = e^0 = 1
Substituting these values into the formula: L(x) = 1 + 1(x-0) = x + 1
Therefore, the best linear approximation to f(x) = e^x near x = 0 is L(x) = x + 1.
For instance, linear approximation is used to approximate the change in a physical quantity due to a small change in another quantity that affects it.
To know more about linear approximation, visit:
https://brainly.com/question/1621850
#SPJ11
high-speed internet laying fiber-optic cable for high-speed internet is an expensive process. cable companies want to make sure that, if they extend their lines out to less dense suburban or rural areas, there will be sufficient demand and the work will be cost-effective. in the rural town of podunk*, the local cable company decides to conduct a survey to determine the proportion of households in a local subdivision that would buy their internet service. the subdivision has 24 blocks, and each block has exactly 10 households, for a total of 240 households.
In the given scenario, the cable company decides to conduct a survey in the rural town of Podunk to determine the proportion of households that would buy their internet service. 50% of the households surveyed would buy internet service from a cable company
To calculate the proportion of households, we use the following formula:
The proportion of households = (Number of households who would buy the service) / (Total number of households surveyed)
The subdivision has 24 blocks, and each block has exactly 10 households, for a total of 240 households.
Therefore, the proportion of households = (Number of households who would buy the service) / (Total number of households surveyed)
Let's say that after conducting the survey, the company finds out that 120 households would buy their internet service. Then, the proportion of households who would buy their internet service can be calculated as follows:
The proportion of households = 120/240
The proportion of households = 0.5
Therefore, 50% of the households surveyed would buy internet service from a cable company. This information can help the company decide whether it is cost-effective to lay fiber-optic cable for high-speed internet in the subdivision. If the proportion of households willing to buy their service is high enough, the cable company will consider extending its line out to the area. However, if the proportion is too low, it may not be worth the expense to lay fiber-optic cable.
Learn more about proportion:
https://brainly.com/question/870035
#SPJ11
in triangle ABC A-B= 15 degree, B-C= 30 degree find A,B,C
Answer:
A=80 , B=65, C=35
Step-by-step explanation:
A-B=15 ⇒A=B+15
B-C=30⇒-C=30-B ⇒C=B-30
the sum of angle of a triangle = 180
A+B+C=180 ( substitute A and C)
B+15+B+B-30=180
3B-15=180
3B=180+15
B=195/3=65
C=B-30 ⇒ C=65-30=35
A=B+15=65+15=80
check : A+B+C=180
80+65+35=180 ( correct)
8 in. 8 in. 8 in Find the area of the figure above, [?] in
Answer:
96
Step-by-step explanation:
Total area = area of cube + area of triangle
A = 8² + \(\frac{8*8}{2}\) = 64 + 32 = 96 in²
Answer:
96 square feet
to find the area of a triangle the formula is
A=1/2×b×h
8×8=64
1/2×8×8=32
32+64= 96
help asap fot brainlist help asap
Question 12
In the figure shown, if J, P, and L are the midpoints of KH, HM, and MK, respectively, find the values of x, y, and z.
Yes it is divisible by 3. A number is fully divisible by three if its digit sum is also divisible by three, according to the rule of divisibility test for three.
what is divisibility test?The divisibility rule is a concise and practical approach to check, often by looking at the integer's digits, whether a given integer is divisible by a given set divisor without actually executing division. Without actually doing the division procedure, you may quickly discover if a given number can be divided by a defined divisor using the divisibility test. When dividing two numbers exactly, the quotient must be an integer and the remainder must be zero.
add all number
9+9+0 = 18
and 18/3 = 6
To know more about divisibility test visit:
brainly.com/question/240581
#SPJ1
On solving the provided question, we can say that in this triangle 2x-6 = 3 => 2x = 9 => x = 9/2 and 2z = 4 => z = 2
What is triangle?A triangle is a polygon since it has three sides and three vertices. It is one of the basic geometric shapes. The name given to a triangle containing the vertices A, B, and C is Triangle ABC. A unique plane and triangle in Euclidean geometry are discovered when the three points are not collinear. Three sides and three corners define a triangle as a polygon. The triangle's corners are defined as the locations where the three sides converge. 180 degrees is the result of multiplying three triangle angles.
here,
in this triangle
2x-6 = 3
2x = 9
x = 9/2
2z = 4
z = 2
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
What term and 12x^2 have a GCF of 4xy? Write an expression that shows the monomial factored out of the polynomial
If the GCF of a term and 12x²y is 4xy , then (a) The term is 8xy , The expression is 4xy(2 + 3x) .
The Greatest Common Factor of the two terms is 4xy ,
where , the first term is 12x²y , we have to find the second term ,
Consider Option(a) : where the second term is 8xy ,
So , GCF of 8xy and 12x²y is
= 2(4xy) and 3x(4xy)
= 4xy(2 + 3x ) ....taking 4xy common from both the terms ,
Therefore , Yes , the second term is 8xy and the expression is 4xy(2+3x) .
The given question is incomplete , the complete question is
What term and 12x²y have a GCF of 4xy? Write an expression that shows the monomial factored out of the polynomial , choose the correct answer below :
(a) The term is 8xy , The expression is 4xy(2 + 3x)
(b) The term is 16xy , The expression is 4xy(4xy + 3x)
(c) The term is 3x , The expression is 12x²y(3x + 4xy)
(d) The term is 4x²y , the expression is 4xy(1 + 3x) .
Learn more about Greatest Common Factor here
https://brainly.com/question/20345809
#SPJ4
Jerry is standing next to a big tree. The tree casts a shadow that is
20 feet long. Jerry, who is 6 ft tall, casts a shadow that is 2 feet
long.
How tall is the tree?
Answer: The tree has to be 60 feet tall
Step-by-step explanation: Jerry’s shadow is a third of Jerry, that means the Tree’s shadow is only a third of the tree. To find the tree’s height you have to multiply the shadow by 3, 20 multiplied by 3 is 60.
If 15 people start a race, in how many different ways can the top 3 finishers be determined?
Hence, 15 people out of 3 people can be chosen in 35 ways.
Combinations:It is a method that helps us to determine the number of possible ways an item can be chosen given that the order of selection does not matter. Hence we are free to select the items in any order.Combinations are often confused with permutations. Permutations are the number of ways the given items can be arranged. Here the order is important.The formula for combinations:If we have 'n' items and we are required to choose 'r' items, the number of ways in which it can be done is calculated as:\(^{n}C_{r} }\) = \(\frac{n!}{(n-r)!r!}\)It is given that:
The total number of people in a race, n = 15
The number of finalists, r = 3.
Hence, the number of ways in which 3 people out of the 15 people can be finishers are:
\(^{15}C_{3} }\) = \(\frac{15!}{(15-3)!3!}\) = \(\frac{15!}{12!3!}\) = 35.
Hence, 15 people out of 3 people can be chosen in 35 ways.
For similar questions on permutations and combinations, visit:
https://brainly.com/question/13387529?referrer=searchResults
#SPJ4
what is -2.1, 0.5, -0.5, 5/100 ordered in least to greatest
Answer:-2.1,-0.5,5/100,0.5
Step-by-step explanation:
a college entrance test consists of 112 questions. the test contains true/false (7 points each), fill in the blank (9 points each) and multiple choice (13 points each). there are 1172 possible points total on the test. the number of fill in the blank is 34 less than the number of true/false. how many points come from fill in the blank questions?
The test has average 80 true/false questions, 24 fill in the blank questions, and 28 multiple choice questions, with 7, 9 and 13 points respectively, totaling 1172 points.
The college entrance test consists of 112 questions in total, with different types of questions having different point values. There are 80 true/false questions, each worth 7 points, with a total of 560 points from these questions. There are also 24 fill in the blank questions, each worth 9 points, giving a total of 216 points from these questions. Finally, there are 28 multiple choice questions, each worth 13 points, for a total of 364 points from these questions. All together, the test has 1172 points available. The number of fill in the blank questions is 34 less than the number of true/false questions, meaning that there are more true/false questions than fill in the blank questions. The test is designed to assess a student's knowledge and comprehension of the subject they are taking the test for, and is made up of the three different types of questions to give a comprehensive assessment of their understanding.
Learn more about average here
https://brainly.com/question/24057012
#SPJ1
How many fluid ounces are there in 8 pints 5 cups?
If the domain of f(x) is -3 ≤ x ≤ 9 and the range of f(x) is 2 ≤ y ≤ 15, then which of the following
statements is correct about the domain and range of 9 (x) = f(x-2) - 8?
"The domain of 9(x) = f(x-2) - 8 is -3 ≤ x ≤ 9 and the range is -6 ≤ y ≤ 7" is correct.
What is the Domain and Range of the function?
The domain of a function is the set of all input values (x-values) for which the function is defined. It is the set of all values of x for which the function is defined.
The range of a function is the set of all output values (y-values) that the function can produce. It is the set of all possible values that the function can take on.
The domain of a function is the set of all input values (x-values) for which the function is defined. The range of a function is the set of all output values (y-values) that the function can produce.
When we shift a function horizontally, the domain remains unchanged, but the range will change. In the case of a shift of -2, the domain of f(x) is still -3≤x≤9
For 9(x) = f(x-2) - 8, it means that we are taking the output of f(x-2) and subtracting 8 from it. So, the range of 9(x) will be (2-8) ≤ y ≤ (15-8) = -6 ≤ y ≤ 7.
In summary,
The domain of 9(x) = f(x-2) - 8 is -3 ≤ x ≤ 9
The range of 9(x) = f(x-2) - 8 is -6 ≤ y ≤ 7
Hence, statement "The domain of 9(x) = f(x-2) - 8 is -3 ≤ x ≤ 9 and the range is -6 ≤ y ≤ 7" is correct.
To learn more about Domain and Range, Visit
https://brainly.com/question/10197594
#SPJ1
When = 3, what will the value for y be for the equation - 4x + 5y = 18?
If x equals 3 then y must equal 1.2
Answer: y=6
-4(3)+5y=18
-12+5y=18
add 12 to both sides
-12+5y+12=18+12
5y=18+12
5y=30
divide both sides by 5
5y÷5=30÷5
y=30÷5
y=6
I hope this is good enough:
HELP ASAP LINEAR EQUATIONS
Answer:
Option (3)
Step-by-step explanation:
From the given figure,
\(a_n=a_1+(n-1)d\)
where \(a_n\) = nth term of an arithmetic sequence
\(a_1\) = first term of the sequence
n = number of term
d = common difference
When n = 1 : \(a_1=-1\)
When n = 2 : \(a_2=-6\)
common difference 'd' = -6 - (-1) = -5
Formula for the nth term for the given sequence will be,
\(a_n=-1+(n-1)(-5)\)
= -1 - 5n + 5
\(a_n\) = 4 - 5n
Now the 12th term of this sequence will be,
\(a_{12}=4-5(12)\)
= 4 - 60
= -56
Therefore, Option (3) will be the answer.
What is the completely factored form of p4 – 16? (p – 2)(p – 2)(p 2)(p 2) (p – 2)(p – 2)(p – 2)(p – 2) (p minus 2) (p 2) (p squared 2 p 4) (p minus 2) (p 2) (p squared 4)
The completely factored form of the provided polynomial is (p -2) (p+ 2) (p² +4). The option 4 is the correct option.
What is polynomial?Polynomial equations is the expression in which the highest power of the unknown variable is n (n is a real number).
The polynomial equation given in the problem is,
\(p^4 - 16\)
Let the factor form of the polynomial is f(p). Thus,
\(f(p)=p^4 - 16\\f(p)=p^4 - 2^4\\f(p)=(p^2)^2- (2^2)^2\)
Using the formula of difference of squares, we get,
\(f(p)=(p^2-4)(p^2+4)\\f(p)=(p^2-2^2)(p^2+4)\\f(p)=(p-2)(p+2)(p^2+4)\)
Thus, the completely factored form of the provided polynomial is (p -2) (p+ 2) (p² +4). The option 4 is the correct option.
Learn more about polynomial here;
https://brainly.com/question/24380382
Answer:
D Edge 2022
Step-by-step explanation:
can i get some on these please?^^
Answer:
These should be right hopefully! Hope it helps!
the question is in the attached file
Answer:
C
Step-by-step explanation:
using
x × y = \(\sqrt{x^2+y^2}\) , then
2 × 4\(\sqrt{2}\)
= \(\sqrt{2^2+(4\sqrt{2})^2 }\)
= \(\sqrt{4+32}\)
= \(\sqrt{36}\)
= 6
\(\textsf {Applying this formula :}\)
\(\mathsf {(x) \times (y) =\sqrt{x^{2} + y^{2}}}\)
\(\textsf {Now take :}\)
\(\mathsf {x = 2}\\\mathsf {y = 4\sqrt{2}}\)
\(\mathsf {Solving :}\)
\(\implies \mathsf {\sqrt{(2)^{2} + (4\sqrt{2})^{2}}}\)
\(\implies \mathsf {\sqrt{4 + 32}}\)
\(\implies \mathsf {6}\)