The simplification of the given expression \(\sqrt{18y^{21}\) will be equal to \(3\sqrt{2} (y)^{\dfrac{21}{2}}\)
What is simplification?The process of reducing the complex mathematical expressions into the simplest form is called as the simplification.
The simplification of the given expression will be:
\(=\sqrt{18y^{21}}\\\\\\=(18)^{\frac{1}{2} } \times (y)^{\frac{21}{2}}\\\\\\=3\sqrt{2}\times y^{\frac{21}{2}}\)
hence the simplification of the given expression \(\sqrt{18y^{21}\) will be equal to \(3\sqrt{2} (y)^{\dfrac{21}{2}}\)
To know more about Simplification follow
https://brainly.com/question/723406
#SPJ1
what is the period of the since function y=sin(4x)?
Answer:
C π/2
Step-by-step explanation:
Amplitude: 1
Period: π2
Phase Shift: None
Vertical Shift: None
Use synthetic division to determine whether or not (x + 1) is a factor of (523 – 1222 – 11x +6).Quotient:help (formulas)- Remainder:help (numbers)
We will solve as follows:
So, we are trying to find:
\(\frac{5x^3-12x^2-11x+6}{x+1}\)Now, we proceed as follows:
*We take the constant term of the divisror with the opposite sign and write it to the left.
*We write the coefficients of the dividenf to the right:
Then, we proceed to operate:
From this, we will have that the quotient is:
\(5x^2-17x+6\)And the remainder is 0.
So, (x + 1) is in fact a factor of (5x^3 -12x^2 -11x + 6).
Solve.
4 There are 42 tubes of oil paint on trays. Each tray
holds 6 tubes. How many trays of tubes are there?
Show your work.
7
Answer: 7
Step-by-step explanation:
Since there are 42 tubes and each tray can hold 6 tubes, it will be 42/6 which is 7.
Point B is a point of tangency. Find the radius r of ⊙C.
Answer:
Step-by-step explanation:
By the Pythagorean Theorem we know
(r+7)^2=r^2+14^2
r^2+14r+49=r^2+196
14r+49=196
14r=147
r=10.5
solve the PDE using separation of variables method Uxx = 1/2 Ut 0< X <3 with U(0,t) = U(3, t)=0, U(0, t) = 5sin(4πx)
The general solution of the partial differential equation is:
U(x, t) = Σ [Aₙ*sin((nπ/3)x)]*e^(-(nπ/3)²t)
How to solve Partial Differential Equations?The partial differential equation (PDE) is given as:
Uxx = (1/2)Ut with the boundary and initial conditions as 0< X <3 with U(0,t) = U(3, t)=0, U(0, t) = 5sin(4πx)
Assume that the solution can be written as a product of two functions:
U(x, t) = X(x)T(t)
Substituting this into the PDE, we have:
X''(x)T(t) = (1/2)X(x)T'(t)
Dividing both sides by X(x)T(t), we get:
(X''(x))/X(x) = (1/2)(T'(t))/T(t)
Since the left side only depends on x and the right side only depends on t, both sides must be equal to a constant, denoted as -λ²:
(X''(x))/X(x) = -λ²
(1/2)(T'(t))/T(t) = -λ²
Simplifying the second equation, we have:
T'(t)/T(t) = -2λ²
Solving the second equation, we find:
T(t) = Ce^(-2λ²t)
Applying the boundary condition U(0, t) = 0, we have:
U(0, t) = X(0)T(t) = 0
Since T(t) ≠ 0, we must have X(0) = 0.
Applying the boundary condition U(3, t) = 0, we have:
U(3, t) = X(3)T(t) = 0
Again, since T(t) ≠ 0, we must have X(3) = 0.
Therefore, we can conclude that X(x) must satisfy the following boundary value problem:
X''(x)/X(x) = -λ²
X(0) = 0
X(3) = 0
The general solution to this ordinary differential equation is given by:
X(x) = Asin(λx) + Bcos(λx)
Applying the initial condition U(x, 0) = 5*sin(4πx), we have:
U(x, 0) = X(x)T(0) = X(x)C
Comparing this with the given initial condition, we can conclude that T(0) = C = 5.
Therefore, the complete solution for U(x, t) is given by:
U(x, t) = Σ [Aₙsin(λₙx) + Bₙcos(λₙx)]*e^(-2(λₙ)²t)
where:
Σ represents the summation over all values of n
λₙ are the eigenvalues obtained from solving the boundary value problem for X(x).
To find the eigenvalues λₙ, we substitute the boundary conditions into the general solution for X(x):
X(0) = 0: Aₙsin(0) + Bₙcos(0) = 0
X(3) = 0: Aₙsin(3λₙ) + Bₙcos(3λₙ) = 0
From the first equation, we have Bₙ = 0.
From the second equation, we have Aₙ*sin(3λₙ) = 0. Since Aₙ ≠ 0, we must have sin(3λₙ) = 0.
This implies that 3λₙ = nπ, where n is an integer.
Therefore, λₙ = (nπ)/3.
Substituting the eigenvalues into the general solution, we have:
U(x, t) = Σ [Aₙ*sin((nπ/3)x)]*e^(-(nπ/3)²t)
where Aₙ are the coefficients that can be determined from the initial condition.
Read more about Partial Differential Equations at: https://brainly.com/question/28099315
#SPJ1
Carl Heinz is placing filing cabinets on an office wall. Each cabinet is 3 1/2 feet wide and the wall is 21 feet long How many cabinets can be placed on the wall?
Carl has a to arrange 3 1/2 feet long cabinets on a wall that is 21 feet long. This means Carl has to divide the entire wall into 3 1/2 feet and see how many of those can fit into it. The solution is shown below;
\(undefined\)Find the equation of the line that passes through (3,1) and is parallel to y=2x+3
Answer:
y -1 = 2(x -3)
Step-by-step explanation:
The given equation is in slope-intercept form:
y = mx +b . . . . line with slope m and y-intercept b
y = 2x +3 . . . . . line with slope 2 and y-intercept 3
__
A parallel line will have the same slope. Since you are given a point, it is convenient to use the point-slope form for the equation you want:
y -k = m(x -h) . . . . . line with slope m through point (h, k)
y -1 = 2(x -3) . . . . . . line with slope 2 through point (3, 1)
__
Additional comment
If you want the slope-intercept form you can solve for y:
y = 2(x -3) +1 = 2x -6 +1
y = 2x -5 . . . . . slope-intercept form of the parallel line
Please indicate which is the best answer to complete the figure below.
Answer:
Step-by-step explanation:
B because after having the star and the circle comes the square.
The graph shows the relationship between the yards of fabric a costume designer uses, x
, and the number of costumes the designer makes, y
.
Which equation represents the relationship?
Responses
y=16x
y = 1 6 x
y=13x
y = 1 3 x
y=3x
y = 3 x
y=6x
The equation that represents the relationship is y = 1/3x
How to determine the equation that represents the relationship?The missing graph in the complete question is added as an attachment
From the question, we have the following points that can be used in our computation:
(x, y) = (0, 0) and (3, 1)
A linear equation is represented as
y = mx + c
Where
c = y when x = 0
So, we have
y = mx
Using the points, we have
1 = 3m
Divide
m = 1/3
Substitute 1/3 for m in y = mx
y = 1/3x
Hence, the function of the relation is y = 1/3x
Read more about linear relation at
https://brainly.com/question/10209928
#SPJ1
change each mixed number into an improper fraction 1 2/3
Answer:
5/3
Step-by-step explanation:
Multiply the denominator by the whole number
3 x 1= 3
Add the answer from above to the numerator
3 + 2= 5
Write the answer from the step above over to the denominator
5/3
Find the equation of a line in parallel to y=2x + 8 that passes through the point (4, 4).
I need help with number 5 please
Answer:
-4\(\frac{1}{2}\)
Step-by-step explanation:
I hope this helps!
Write and solve a system of inequalities graphically and determine one possible solution?
We have
x is the number of hour working as a lifeguard
y is the number of hour washing cars
The first inequality is
\(x+y\le15\)we isolate the y
\(y\le15-x\)the second inequality is
\(13x+8y\ge160\)then we isolate the y
\(y\ge\frac{160-13x}{8}\)then we will plot the inequalities
We have as a solution the area where the two areas intercept each other
One solution to these systems of inequalities could be
x=12
y=2
Julian could work 12 hours lifeguarding and 2 hours washing cars
Mike can drive 345 miles on
15 gallons of gas. How many
miles per gallon does Mike
get?
Answer:
23
if you have 15 gallons of gas and it makes it 345 miles that is 345 divided by 15 which is 23 or 023
15x2 equals 30 34 - 30 equals 4 bring the 5 down you have 45 15x3 equals 45, 45 - 45 equals 0
Ethan rolls the number cube and then spins the arrow on the
spinner. A list of all the possible outcomes is shown.
Answer:
B 1/2
Step-by-step explanation:
This is right
The probability that the sum of the two numbers is odd, given that the product is 6 will be 2/3. Option C is correct.
What is probability?Probability is synonymous with possibility. It is concerned with the occurrence of a random event. Probability can only have a value between 0 and 1.
Ethan cranks the arrow on the spinner after rolling the number cube. There is a list of all conceivable outcomes.
{(1, 1), (1, 2), (1,3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4,1),(4,2), (4,3), (5, 1), (5,2), (5,3), (6, 1), (6,2), (6,3)}
The no of sets having the sum of the number is odd=9
The no of sets having the product of the number is 6=3
The total number including the two conditions=3+9=12
Probability is found as;
P=12/18
P=2/3
The probability that the sum of the two numbers is odd, given that the product is 6 will be 2/3.
Hence, option C is correct.
To learn more about probability, refer to the link;
https://brainly.com/question/795909
#SPJ2
Which of the following could be the ratio between the lengths of the two legs
of a 30-60-90 triangle?
Check all that apply.
A. √2:2
B. √√3:√√3
C. √5:3
D. 1 √3
□ E. 1: √2
O F. 2:3
SUBMIT
Answer: E
Step-by-step explanation:
What is the answer to this question: 8V+3=105
Note: this is Vertical/Adjacent/Complementary Angles (Algebraic)
8V+3=105
clt
8v=105-3
=102
divide both sides by 8v
8v=102/8v
V=12.75
Find the volume of this figure
Answer:
A
Step-by-step explanation:
36*12*6+12*24*3=3456
Answer:
3456
Step-by-step explanation:
36*12*6 + 24*12*3
just add up the two volumes
8.) SAT CORNER: Gatsby leaves his dock and takes his
motorboat due east for 0.5 miles to pick up Daisy. Then,
they motor 1.2 miles north to a private island in the
middle of the sound. What is the straight-line distance,
in miles, from the island to Gatsby's dock?
The distance from the island to Gatsby's dock is 1.3 miles.
What is a Pythagoras theorem?A Pythagoras theorem is a principle that can be used to determine the unknown side of a right angled triangle when the other two sides are known.
Applying the Pythagoras theorem to the given question, let the distance from island to Gatsby's dock be represented by s. Then;
/Hyp/^2 = /Opp/^2 + /Adj/^2
s^2 = 1.2^2 + 0.5^2
= 1.44 + 0.25
= 1.69
s = 1.69^1/2
= 1.3
Thus, the straight-line distance from the island to Gatsby's dock is 1.3 miles.
Learn more about Pythagoras theorem at https://brainly.com/question/30119535
#SPJ1
For each function, find f(−x) and −f(x) and then determine whether it is even, odd, or neither. Justify your answer. f(x)=2x^2-7x+10
The function f(x) = 2x² - 7x + 10 is an odd function.
f(-x) = 2(-x)² - 7(-x) + 10
= 2x² + 7x + 10
-f(x) = -[2x²- 7x + 10]
= -2x² + 7x - 10
To determine whether the function f(x) = 2x² - 7x + 10 is even, odd, or neither, we compare f(-x) and -f(x).
1. f(-x) = 2x² + 7x + 10
2. -f(x) = -2x² + 7x - 10
To determine if f(-x) = -f(x) (even function), we substitute -x for x in f(x) and check if the equation holds.
1. f(-x) = 2x² + 7x + 10
= f(x) (not equal to -f(x))
Since f(-x) is not equal to -f(x), the function is not even.
Next, to determine if f(-x) = -f(x) (odd function), we substitute -x for x in f(x) and check if the equation holds.
2. -f(x) = -2x² + 7x - 10
= -(2x² - 7x + 10)
= -(f(x))
Since -f(x) is equal to -(f(x)), the function is odd.
For more such questions on odd, click on:
https://brainly.com/question/2263958
#SPJ8
What is the answer to Rx+12r+8r
Answer: Rx + 20r
Step-by-step explanation:
Use the relative frequency method to estimate the probability. Round your answer to 2 decimal
places when necessary.
In a poll, respondents were asked whether they were planning to vote in the local election. 315
respondents indicated that they were planning to vote and 217 said that they were not. What is the
probability that the next respondent questioned will indicate that they are planning to vote?
Select one:
O a. 0.41
O b. 0.59
O c. 1.45
O d. 0.5
The probability that the next respondent questioned will indicate that they are planning to vote is 0.59.
Given that, 315 respondents indicated that they were planning to vote and 217 said that they were not.
What is the probability?Probability can be defined as the ratio of the number of favorable outcomes to the total number of outcomes of an event.
We know that, probability of an event = Number of favourable outcomes/Total number of outcomes
Now, probability of voting is
P(voting)=315(315+217)
= 315/532
= 0.59
Therefore, the probability that the next respondent questioned will indicate that they are planning to vote is 0.59.
To learn more about the probability visit:
https://brainly.com/question/11234923.
#SPJ1
Evaluate A² for A = -4.
Answer:
-4^2= 16
Step-by-step explanation:
a^2 when A=-4 means -4^2 which, when expanded means, -4*-4 that equals a positive 16 because the negatives cancel out.
Answer:
-4^2= 16
Step-by-step explanation:
2y-11=25 solve the equation
Answer:
18
Step-by-step explanation:
25 + 11 = 36
36/2 = 18
hope this helps
The length of a cell phone is 1.41.4 inches and the width is 4.44.4 inches. The company making the cell phone wants to make a new version whose length will be 1.751.75 inches. Assuming the side lengths in the new phone are proportional to the old phone, what will be the width of the new phone?
Answer:
Step-by-step explanation:
Answer:
5.573.75
Step-by-step explanation:
because math
Solve each proportion 3 = 72 – 7
1. 3/7 = 72/x
By cross multiplication we get :
➟ 3x = 72 × 7
➟ x = 72 × 7/3
➟ x = 24 × 7
➟ x = 168
2. m/8 = 8/20
By cross multiplication we get :
➟ 20m = 8 × 8
➟ 20m = 64
➟ m = 64/20
➟ m = 16/5
Laura is creating the following design out of wood for it to be light enough she needs it’s area to be less than 80 square inches will Laura’s design be light enough justify you’re answer.
11inches 9inches 5Inches 5inches
Sorry I can’t show a pic
The area of a shape is the amount of space it can occupy.
Laura's design will be light enough
The shape is given as a trapezium (see attachment).
First, calculate the height (h) of the trapezium using the following Pythagoras theorem
\(5^2 = h^2 + x^2\)
Where:
\(x = \frac{11 - 9}{2} = 1\)
So, we have:
\(5^2 = h^2 + x^2\)
\(5^2 = h^2 + 1^2\)
\(25 = h^2 + 1\)
Collect like terms
\(h^2 = 25 -1\)
\(h^2 = 24\)
Take square roots
\(h = 4.90\)
The area of the shape is then calculated as follows:
\(Area = \frac{1}{2}(11 + 9) \times h\)
\(Area = \frac{1}{2}(11 + 9) \times 4.90\)
\(Area = \frac{1}{2} \times 20 \times 4.90\)
\(Area = 10 \times 4.90\)
\(Area = 49\)
The area of the shape is 49 square inches.
Hence, the shape will be light enough (because 49 is less than 80)
Read more about areas at:
https://brainly.com/question/16418397
How many times would a coin have to show heads in 50 tosses to have an experimental probability of 20% more than the theoretical probability of getting heads? Which of the following represents a function
Answer: The required number of heads = 30
Step-by-step explanation:
Given, Total tosses = 50
The theoretical probability of getting head = \(\dfrac{1}{2}\)
As per given,
Experimental probability = Theoretical probability + 20% of Theoretical probability
= \(\dfrac{1}{2}+\dfrac{20}{100}\times\dfrac{1}{2}\)
= \(\dfrac{1}{2}+\dfrac{1}{10}=0.5+0.1=0.6\)
Required number of heads = (Experimental probability) x (Total tosses )
= 0.6 x 50
= 30
Hence, the required number of heads = 30
A relation is said to be a function if each input value corresponds to a unique output value.For example: {(1,2), (3,4), (2,3), (4,1))}
Answer:
35 is the Answer
The base of a parallelogram with area 154.5 cm² and height 15 cm is
(a) 10 cm
(b) 12 cm
(c) 10.3 cm
(d) 13 cm
Answer:
▶ (c) 10.3 cmStep-by-step explanation:
\( \space\)
A = b × h
=> 154.5 = b × 15
=> b = \( \sf{\frac{154.5}{15} }\)
=> 10.3 cm
\( \space\)
Hope it helps!
Have a great day! :)
find x and y please explain really well
Answer:
x=10,y=120
Step-by-step explanation:
3x-30=60 CDA
3x=30
x=10
again,
y+60=180 straight line
y = 120