Answer:
a reflection of a point over the y -axis is shown. the rule for a reflection over the y -axis is (x,y)→(−x,y) .
solve the equation by completing the square. (step by step please)
4x(x + 6) = -40
Answer:
4(x+3)²+4
Step-by-step explanation:
4x²+24x+40=0
using the equation above
a:4 b:24 c:40
4(x+(24÷2x4))² + (40-(24²÷4x4))
4(x+3)²+(40-36)
4(x+3)²+4
find the surface area of the cylinder use 3.14 for n
The surface area of the cylinders are 565.2 square yards and 395.64 square cm
Calculating the surface area of a cylinderThe formula for calculating the surface area of a cylinder is expressed as:
S = 2πr(r+h)
where
r is the radius
h is the height
1) Given that r = 6yd and h = 9yd
S = 2(3.14)6(6+9)
S = 565.2 square yd
Hence the surface area of the cylinder is 565.2 square yards
2) Given that r = 3cm and h = 18cm
S = 2(3.14)3(3+18)
S = 395.64 square cm
Hence the surface area of the cylinder is 395.64 square cm
Learn more on surface area of cylinder here: https://brainly.com/question/27440983
#SPJ1
a one year subscription to the monthly magazine cost $ 15.60. The regular newsstand price is 1.95 per issue. How many is saved per issue by paying the subscription price
Answer: $0.65
Step-by-step explanation:
Amount for the magazine in a regular newsstand for one year:
1.95*12=$23.4
Amount saved per issue with subscription:
(23.4-15.60) ÷ 12 = $0.65 per issue is saved with a subscription
Hello! I need some assistance with this homework question for precalculus, please?HW Q23
Solution
Step 1:
Write the logarithm function
\(\log_a^6\text{ = 4}\)Step 2:
Base = a
Exponent = 4
Hence
\(\begin{gathered} \text{The exponential function is:} \\ a^4\text{ = 6} \end{gathered}\)Final answer
\(a^4\text{ = 6}\))A medical test correctly indicates that 97% of the affected population has a disease but incorrectly indicates that two percent of the healthy population has the disease. If 5% of the population has the disease what is the probability that a person who is diagnosed with the disease actually does?
Step-by-step explanation:
The probability that a person who is diagnosed with the disease actually has it is 97%.
This is because 97% of the affected population has the disease, and only 2% of the healthy population shows a positive result.
Therefore, if a person is diagnosed with the disease, there is a 97% chance that they actually have it, and only a 3% chance that the test was false-positive.
The art supply store is having a sale. Paint sets are 20% off and everything else is 15% off. Before the discount, a paint set is priced at $43.50, a canvas is $12.75, and paint brushes are $7.50. Mary purchases all three of these items. About how much did Mary spend after the discount, before sales tax? Group of answer choices
Answer:
Step-by-step explanation:
Step one:
given
paint set= $43.50
20% off 43.50
20/100*43.50
0.2*43.50
=$8.7
43.5-8.7
new price of paint set=$34.8
canvas=$12.75
15% off 12.75
15/100*12.75
0.15*12.75
=1.9125
=12.75-1.9125
new price of canvas=$10.83
paint brushes are $7.50
15% off $7.5
15/100*7.5
0.15*7.5
=1.125
=7.5-1.125
new price of paint brush=$6.38
total =$34.8+$10.83+$6.38= $39.25
Answer:
actually the answer is 52
Step-by-step explanation:
20% x 43.50/100 = 34.8
12.75 x 15% /100 = 10.83
7.50x 15%/100 = 6.37$
Add all of them together and you will get 52$
Easiest way to do it
20% x 43.50/100
12.75 + 7.50 = 20.25
20.25 x 15%/ 100 = 3.03
20.25 - 3.03 = 17.21
Then add all of them together and you will still end up with about 52$
17.21 + 34.8 = 52
Help me please with this math assignment
The actual distance of 6 cm, given the scale of the map, would be 30 km .
The distance on the map, given the actual distance on the ground and the scale, would be 6 inches .
How to find the actual distance ?The scale is that for every 1 cm on the map, the actual distance is 5 kilometers. When given 6 cm therefore, the actual distance is :
= 6 x 5
= 30 km
The scale of the second map is such that 1 inch on the map is 3 actual kilometers so 18 km on the ground would be :
= 18 / 3
= 6 inches
Find out more on actual distance at https://brainly.com/question/20333247
#SPJ1
A rectangular garden has a length that is six feet more than twice its width. It takes 120 feet of fencing to completely enclose the garden's area.
Write an equation that could be used to find the width of the garden. Clearly define your variable.
Explain how your equation models the given information.
Find the length of the garden algebraically. Show how you arrived at your answer.
Step-by-step explanation:
let width = w then length, l = 2w + 6
\(2w + 2(2w + 6) = 120\)
a rectangular garden has two pairs of equal parallel sides 2w and 2l. here we multiply 2 by the width and 2 by the length which is given as 6 more than twice the width or 2w + 6. we then add these sides to get 120
\(2w + 2(2w + 6) = 120 \\ 2w + 4w + 12 = 120 \\ 6w + 12 = 120 \\ 6w + 12 - 12 = 120 - 12 \\ 6w = 108 \\ \frac{6w}{6} = \frac{108}{6 } \\ w = 18\)
check
\( width = w = 18\\ length \: l = 2w + 6 = 2(18) + 6 = 42\\ w + w + l + l = 120\\ 2w + 2l = \\ 2(18) + 2(42) = \\ 36 + 84 = 120\)
-2/3 ÷2 4/1 =
what is the answer i need help
Answer: Exact Form:
−19
Decimal Form:
−0.¯1
Step-by-step explanation:
Will give Brainliest!! This graph models the number of teachers assigned to a school, as determined by the number of students. What is the constant of proportionality? Number of Teachers A line graph titled Number of Teachers has number of students on the x-axis, and number of teachers on the y-axis. For every 60 students, there are 4 teachers; 120, 8. StartFraction 1 over 25 EndFraction StartFraction 1 over 20 EndFraction StartFraction 1 over 15 EndFraction StartFraction 1 over 10
Answer:
b
Step-by-step explanation:
rude people delete meh answers
rude the answer is b
thank u very much now i must b on my way
Answer:
Its B
Step-by-step explanation:
Because the first one is correct give the credit to her.
2(x-1)^2+3=f(x) is one to one function
The function is not one to one function.
What is one to one function?
A function f(x) is sait to be one to one function if it satisfies the following two conditions:
(1) \(f(x_1)=f(x_2)\) implies \(x_1=x_2\).
(2) ∀\(x_1\), ∀\(x_2\), \(x_1\ne x_2\) implies that \(f(x_1) \ne f(x_2)\).
It means that there is only one value for each value of the variable x.
Now, consider the given function.
\(2(x-1)^2+3=f(x)\)
If it is one to one function then it must satisfy the above two conditions.
Lets check the first condition. Substitute 3 for x.
\(2(3-1)^2+3=f(3)\\11=f(3)\)
Again, substitute -1 for x.
\(2(-1-1)^2+3=f(-1)\\11=f(-1)\)
Hence at two different values of x the function have the same value.
In this case, f(-1)=f(3) but \(-1 \ne 3\). Hence, it do not satisfy the first condition.
Hence, the given function is not one to one function.
Learn more about one to one function from the following link:
https://brainly.com/question/28911089
#SPJ1
what is the last digit of 3 with a power of 2011
So to find any last digit of 3^2011 divide 2011 by 4 which comes to have 3 as remainder. Hence the number in units place is same as digit in units place of number 3^3. Hence answer is 7.
3/4 - 2/7 = ? pls help me because I can get grounded
Answer:
1/7
Step-by-step explanation:
&&5_4_&&&&&&&&&&&&&---
Translate this sentence into an equation.
Craig's age increased by 9 is 41.
Use the variable c to represent Craig's age.
That sentence tells us that when you add 9 to Craig's age, the answer is 41 therefore you are simply adding those two and you'll get the equation:
\(c\ +\ 9\ =\ 41\)
___________ statistics summarize numbers and _____________ statistics determine whether the results are significant.
Descriptive statistics summarize numbers and inferential statistics determine whether the results are significant.
What is statistics?
The gathering, characterization, analysis, and drawing of inferences from quantitative data are all tasks that fall under the purview of statistics, a subfield of applied mathematics. Probability theory, linear algebra, and differential and integral calculus play major roles in the mathematical theories underlying statistics.
Statistics is the study and manipulation of data, including methods for data collection, evaluation, analysis, and interpretation.Descriptive statistics and inferential statistics are the two main subfields of statistics.Different levels of statistics communication are possible, from non-numerical descriptor (nominal-level) to numerical with reference to a zero-point (ratio-level).To gather statistical data, a variety of sampling methods can be utilized, including basic random, systematic, stratified, or cluster sampling.To know more about the statistics
https://brainly.com/question/15525560
#SPJ4
if abcd∼efgh, find the value of x
The calculated value of x in the similar shapes given that abcd ∼ efgh is 15
Calculating the value of x in the similar shapesFrom the question, we have the following parameters that can be used in our computation:
abcd ∼ efgh
By the corresponding ratio of similar shapes, we have the following equation
AB/AD = EF/EH
Using the above as a guide, we have the following:
8/14 = (x - 3)/(x + 6)
Cross multiply the equation
This gives
8(x + 6) = 14(x - 3)
When solved for x, we have
x = 15
Hence, the value of x in the shapes is 15
Read more about similar shapes at
https://brainly.com/question/14285697
#SPJ1
oybean meal is 14% protein; cornmeal is 7% protein. How many pounds of each should be mixed together in order get 280-1b mixture that is 12% protein?
200 pounds of soybean meal which is 14% protein and 80 pounds of cornmeal which is 7% protein should be mixed together in order to get a 280-pound mixture that is 12% protein.
To solve the problem, we will use a system of linear equations by letting:
Let x be the number of pounds of soybean meal
Let y be the number of pounds of cornmeal
The first equation represents the total weight of the mixture:
x + y = 280
The second equation represents the total amount of protein in the mixture:
0.14x + 0.07y = 0.12(280)
Simplifying the second equation:
0.14x + 0.07y = 33.6
To solve for x and y, we can use the substitution method.
Substitute x = 280 - y into the second equation:
0.14(280 - y) + 0.07y = 33.6
Simplify and solve for y:
39.2 - 0.14y + 0.07y = 33.6
-0.07y = -5.6
y = 80
Therefore, we need 80 pounds of cornmeal.
Substitute y = 80 into x + y = 280:
x + 80 = 280x = 200
Therefore, we need 200 pounds of soybean meal.
To know more about mixture refer here:
https://brainly.com/question/8056161
SPJ11
You want to select a sample of size 100 from a population of size 1000. A friend says to you: You want 10% of the population in your sample. So, for every case in the population, use a computer to generate a random number between 0 and 10; include that case in the sample if and only if the random number generated is 0. Which of the following statements is the most appropriate?
A. The sampling method is appropriate.
B. The sampling method is not appropriate, because the sample it produces is not guaranteed to be of the required size.
C. The sampling method is not appropriate, because the sample it produces is biased.
D. None of the above.
E. unsure
The sampling method is not appropriate because the sample it produces is not guaranteed to be of the required size. Option B
What is the sampling method?The procedure outlined in the scenario involves assigning each case in the population a random number between 0 and 10, and only including that case in the sample if that number is 0. However, this method does not guarantee that the sample size will be 100 as required. The likelihood that exactly 10% of the cases will have a random number of 0 is actually extremely slim.
This sampling technique also creates bias. The sample will not be representative of the population if it only includes cases with a random number of 0, and some cases will have a disproportionately larger chance of being included.
Learn more about sampling method:https://brainly.com/question/15604044
#SPJ4
which number line model of the sum of 8 + -12 correctly
Answer:
U did not add a picture but if u do I will help.
Step-by-step explanation:
It should be 8 to the right and 12 to the left which should end at -4
Answer:
The answer is 4?? tell me if it's wrong or not.
The segments shown below could form a triangle. A True B. False
Answer:
False
Step-by-step explanation:
This question is pretty simple and easy so please answer it.
Determine if the table represents a linear function, exponential function or quadratic function.
The pattern value that identifies part of the equation is_______
Answer:
Quadratic
Step-by-step explanation:
Consider the following vector field.
F(x, y, z) =
9ex sin(y), 2ey sin(z), 8ez
sin(x)
(a)
Find the curl of the vector field.
curl(F) =
(b)
Find the divergence of the vector field.
div(F) =
The curl of the vector field
curl(F) = -2ey cos(z)i + 8ez cos(x)j - 9ex cos(y)k
The divergence of the vector field
div(F) = 9e^x sin(y) + 2e^y sin(z) + 8e^z
To find the curl of the vector field F(x, y, z) = 9ex sin(y), 2ey sin(z), 8ez sin(x), we need to compute the determinant of the curl matrix.
(a) Curl of F:
The curl of a vector field F = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k is given by the following formula:
curl(F) = (∂R/∂y - ∂Q/∂z)i + (∂P/∂z - ∂R/∂x)j + (∂Q/∂x - ∂P/∂y)k
In this case, we have:
P(x, y, z) = 9ex sin(y)
Q(x, y, z) = 2ey sin(z)
R(x, y, z) = 8ez sin(x)
Taking the partial derivatives, we get:
∂P/∂y = 9ex cos(y)
∂Q/∂z = 2ey cos(z)
∂R/∂x = 8ez cos(x)
∂R/∂y = 0 (no y-dependence in R)
∂Q/∂x = 0 (no x-dependence in Q)
∂P/∂z = 0 (no z-dependence in P)
Substituting these values into the curl formula, we have:
curl(F) = (0 - 2ey cos(z))i + (8ez cos(x) - 0)j + (0 - 9ex cos(y))k
= -2ey cos(z)i + 8ez cos(x)j - 9ex cos(y)k
Therefore, the curl of the vector field F is given by:
curl(F) = -2ey cos(z)i + 8ez cos(x)j - 9ex cos(y)k
(b) Divergence of F:
The divergence of a vector field F = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k is given by the following formula:
div(F) = ∂P/∂x + ∂Q/∂y + ∂R/∂z
In this case, we have:
∂P/∂x = 9e^x sin(y)
∂Q/∂y = 2e^y sin(z)
∂R/∂z = 8e^z
Substituting these values into the divergence formula, we have:
div(F) = 9e^x sin(y) + 2e^y sin(z) + 8e^z
Therefore, the divergence of the vector field F is given by:
div(F) = 9e^x sin(y) + 2e^y sin(z) + 8e^z
Learn more about divergence of the vector this link:
https://brainly.com/question/30907324
#SPJ11
1. An unknown number of liters of mixture containing 6% boric acid is to be mixed with 2 liters of
a mixture which is 15% boric acid. The new solution created is to be at a concentration of 12%
boric acid. How much of the 6% solution must be used? Show all work.
Answer:
0.4
Step-by-step explanation
2/0.15+x/0.06=x+2/0.12
30=x/0.12+2/0.12
1.6+2x=x+2
x=0.4
help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
what is the question you want 12 or 13
Finding the sum of series help: ∑=1[infinity](−9)x.
To find the sum of the series ∑=1[infinity](−9)x, we first need to determine whether the series converges or diverges. We can use the ratio test to do this. Therefore, the sum of the series ∑=1[infinity](−9)x is (-9)x / (1 - x), provided that |x| < 1.
The ratio test states that for a series ∑an, if the limit of |an+1/an| as n approaches infinity is less than 1, then the series converges. If the limit is greater than 1 or does not exist, then the series diverges.
Applying the ratio test to our series, we get:
|(-9)x(n+1) / (-9)x(n)| = |x(n+1) / x(n)|
As x is a constant, this simplifies to:
|x(n+1) / x(n)| = |x|
Since |x| is a constant, the limit of |x(n+1) / x(n)| as n approaches infinity is also |x|. Therefore, if |x| < 1, the series converges, and if |x| ≥ 1, the series diverges.
Assuming that |x| < 1, we can then find the sum of the series using the formula for an infinite geometric series:
S = a / (1 - r)
where a is the first term of the series and r is the common ratio. In this case, a = (-9) x and r = x.
Substituting these values into the formula, we get:
S = (-9)x / (1 - x)
Therefore, the sum of the series ∑=1[infinity](−9)x is (-9)x / (1 - x), provided that |x| < 1.
Learn more about series here:
brainly.com/question/15415793
#SPJ11
There are 7 days in a week.
Let x represent the number of weeks and y represent the corresponding number of days.
Complete the table using the equation y=7x.
x y
5
6
7 49
8
Answer:
Step-by-step explanation:
The equation is y=7x
x y Calculation
5 35 y=7x, y=7*5, y=35
6 42 y=7x, y=7*6, y=42
7 49 y=7x, y=7*7, y=49
8 56 y=7x, y=7*8, y=56
Consider the upper bound for total numerical error E h2 eh) + M h 6 Prove that e(h) has a minimum at h = : 3€/M
To prove that e(h) has a minimum at h = 3€/M, we need to first understand the terms involved. The upper bound for total numerical error E h2 eh) + M h 6 refers to the maximum possible error in a numerical computation.
It includes two types of error: the truncation error (E h2) which results from approximating a mathematical function using a finite number of terms, and the round-off error (eh) which results from the limited precision of computer arithmetic.
The numerical error e(h) is a function of the step size h used in numerical approximations. It is given by e(h) = E h2 + M h 6 + eh.
Now, to prove that e(h) has a minimum at h = 3€/M, we can take the derivative of e(h) with respect to h and set it to zero.
de(h)/dh = 2Eh - Mh5 + eh'
Setting this equal to zero, we get:
2Eh - Mh5 + eh' = 0
Rearranging and solving for h, we get:
h = (2E/Me')^(1/4)
Substituting this value of h in e(h), we get:
e(h) = (4/3)^(3/4) * (EM)^(1/4) * eh'
Since eh' is a constant, e(h) is minimized when EM is minimized.
Therefore, we need to find the minimum value of EM, which is achieved when h = 3€/M.
Thus, we can conclude that e(h) has a minimum at h = 3€/M.
Visit here to learn more about numerical computation:
brainly.com/question/29555380
#SPJ11
Which expression is equivalent to 5 a + 20?
5 (5 a + 4)
5 (a + 4)
5 (a + 20)
5 (a + 1)
Answer:
It's B
Step-by-step explanation:
I took the quiz and I'm just good at math.
Consider the vectors: a=(1,1,2),b=(5,3,λ),c=(4,4,0),d=(2,4), and e=(4k,3k)
Part(a) [3 points] Find k such that the area of the parallelogram determined by d and e equals 10 Part(b) [4 points] Find the volume of the parallelepiped determined by vectors a,b and c. Part(c) [5 points] Find the vector component of a+c orthogonal to c.
The value of k is 1, the volume of the parallelepiped is 12 + 4λ, and the vector component of a + c orthogonal to c is (1,1,1.5).
a) Here the area of the parallelogram determined by d and e is given as 10. The area of the parallelogram is given as `|d×e|`.
We have,
d=(2,4)
and e=(4k,3k)
Then,
d×e= (2 * 3k) - (4 * 4k) = -10k
Area of parallelogram = |d×e|
= |-10k|
= 10
As we know, area of parallelogram can also be given as,
|d×e| = |d||e| sin θ
where, θ is the angle between the two vectors.
Then,10 = √(2^2 + 4^2) * √((4k)^2 + (3k)^2) sin θ
⇒ 10 = √20 √25k^2 sin θ
⇒ 10 = 10k sin θ
∴ k sin θ = 1
Therefore, sin θ = 1/k
Hence, the value of k is 1.
Part(b) The volume of the parallelepiped determined by vectors a, b and c is given as,
| a . (b × c)|
Here, a=(1,1,2),
b=(5,3,λ), and
c=(4,4,0)
Therefore,
b × c = [(3 × 0) - (λ × 4)]i + [(λ × 4) - (5 × 0)]j + [(5 × 4) - (3 × 4)]k
= -4i + 4λj + 8k
Now,| a . (b × c)|=| (1,1,2) .
(-4,4λ,8) |=| (-4 + 4λ + 16) |
=| 12 + 4λ |
Therefore, the volume of the parallelepiped is 12 + 4λ.
Part(c) The vector component of a + c orthogonal to c is given by [(a+c) - projc(a+c)].
Here, a=(1,1,2) and
c=(4,4,0).
Then, a + c = (1+4, 1+4, 2+0)
= (5, 5, 2)
Now, projecting (a+c) onto c, we get,
projc(a+c) = [(a+c).c / |c|^2] c
= [(5×4 + 5×4) / (4^2 + 4^2)] (4,4,0)
= (4,4,0.5)
Therefore, [(a+c) - projc(a+c)] = (5,5,2) - (4,4,0.5)
= (1,1,1.5)
Therefore, the vector component of a + c orthogonal to c is (1,1,1.5).
Conclusion: The value of k is 1, the volume of the parallelepiped is 12 + 4λ, and the vector component of a + c orthogonal to c is (1,1,1.5).
To know more about orthogonal visit
https://brainly.com/question/32250610
#SPJ11
What is the area of this shape? ANSWER AS FAST AS YOU CAN!!!!
Answer: 5x4x8x4x5x2x6x8x1
Step-by-step explanation:
Answer:
32 Square centimeters
Step-by-step explanation:
You have to seperate the shape into triangles and rectangles. if you do this, you get 2 identical triangles and 2 different rectangles. one of the rectangles is 8 square cm, the other is 12. you can see that the base of each of the 2 triangles is 3 cm long. 2 halves=1 whole, so the 2 triangles turn into 1 rectangle. therefore, you have to add 12+12+8. That is 32 square centimeters.
Hope my answer helped!