Answer:
20 n
Step-by-step explanation:
as both are exerting force on the same side i.e. to the west side with 10 N each the total net force is 10+10=20N and the table will move to the west side....
Thank you
The net force acting on the object will be 20 units and the direction will be the same as the direction of force applied.
What is gravitational force?All mass-bearing objects are attracted by gravitational force. Because it consistently attempts to bring masses together rather than push them apart, the gravitational force is referred to as attractive.
As we know, the gravitational force is given by:
\(\rm F = \dfrac{Gm_1m_2}{r^2}\)
Where G is the gravitational constant.
m1 and m2 are masses.
r is the distance between the masses.
It is given that:
Boy 'a' and boy 'b' are pushing a heavy table in the west direction at the same time with 10 units of force each
The table will shift to the west side since both are applying 10 N of force to the same side, i.e., the west side, for a total net force of 10+10=20 N.
Total net force = 10 + 10 = 20 units
Thus, the net force acting on the object will be 20 units and the direction will be the same as the direction of force applied.
Learn more about the gravitational force here:
brainly.com/question/12528243
#SPJ2
What is the solution to –2|2.2x – 3.3| = –6.6?
x = –3
x = 3
x = –3 or x = 0
x = 0 or x = 3
Answer:
D
Step-by-step explanation:
need some help with the question in the image
Answer:
oranges $3.50 per Kg, bananas $3 per Kg
Step-by-step explanation:
let b represent cost of bananas and o represent cost of oranges , then
2b + 3o = 16.5 → (1)
o = b + 0.5 → (2)
substitute o = b + 0.5 into (1)
2b + 3(b + 0.5) = 16.5 ← distribute parenthesis on left side and simplify
2b + 3b + 1.5 = 16.5
5b + 1.5 = 16.5 ( subtract 1.5 from both sides )
5b = 15 ( divide both sides by 5 )
b = 3
substitute b = 3 into (2)
o = 3 + 0.5 = 3.5
cost of oranges = $3.50 and cost of bananas = $3
Find the circulation and flux of the field F = -7yi + 7xj around and across the closed semicircular path that consists of the semicircular arch r1(t)= (- pcos t)i + (-psin t)j, Ostst, followed by the line segment rz(t) = – ti, -p stap. The circulation is (Type an exact answer, using a as needed.) The flux is . (Type an exact answer, using t as needed.)
The value of Circulation = 7p²π + 7p³/3 and Flux = 0
To find the circulation and flux of the vector field F = -7yi + 7xj around and across the closed semicircular path, we need to calculate the line integral of F along the path.
Circulation:
The circulation is given by the line integral of F along the closed path. We split the closed path into two segments: the semicircular arch and the line segment.
a) Semicircular arch (r1(t) = (-pcos(t))i + (-psin(t))j):
To calculate the line integral along the semicircular arch, we parameterize the path as r1(t) = (-pcos(t))i + (-psin(t))j, where t ranges from 0 to π.
The line integral along the semicircular arch is:
Circulation1 = ∮ F · dr1 = ∫ F · dr1
Substituting the values into the equation, we have:
Circulation1 = ∫ (-7(-psin(t))) · ((-pcos(t))i + (-psin(t))j) dt
Simplifying and integrating, we get:
Circulation1 = ∫ 7p²sin²(t) + 7p²cos²(t) dt
Circulation1 = ∫ 7p² dt
Circulation1 = 7p²t
Evaluating the integral from 0 to π, we find:
Circulation1 = 7p²π
b) Line segment (r2(t) = -ti, -p ≤ t ≤ 0):
To calculate the line integral along the line segment, we parameterize the path as r2(t) = -ti, where t ranges from -p to 0.
The line integral along the line segment is:
Circulation2 = ∮ F · dr2 = ∫ F · dr2
Substituting the values into the equation, we have:
Circulation2 = ∫ (-7(-ti)) · (-ti) dt
Simplifying and integrating, we get:
Circulation2 = ∫ 7t² dt
Circulation2 = 7(t³/3)
Evaluating the integral from -p to 0, we find:
Circulation2 = 7(0 - (-p)³/3)
Circulation2 = 7p³/3
The total circulation is the sum of the circulation along the semicircular arch and the line segment:
Circulation = Circulation1 + Circulation2
Circulation = 7p²π + 7p³/3
Flux:
To calculate the flux of F across the closed semicircular path, we need to use the divergence theorem. However, since the field F is conservative (curl F = 0), the flux across any closed path is zero.
Therefore, the flux of F across the closed semicircular path is zero.
To know more about line integral click on below link:
https://brainly.com/question/32514459#
#SPJ11
how do I do this homework???
Step-by-step explanation:
a)
135
/ \
3. 45
/ \
3. 15
/ \
3. 5
b)
250
/ \
10 .25
/\ / \
2 5. 5 5
c)
351
/ \
3. 117
/ \
3. 39
/ \
3. 13
Hope it helps :)
A quantity with an initial value of 890 grows continuously at a rate of 3-5% per decade. What is the value of the quantity after 99 years, to the nearest hundredth?
Let P represent the initial value
Let r represent annual growth rate
let n represent the number of periods
p = 890
r=3.5%
n = 10 ( since a decade is 10 years, 99 years after will be 10 decades)
the formula to calculate the value after 99 years is given by
\(\begin{gathered} A=p(1+\text{ }\frac{r}{100})^n \\ \\ A=\text{ 890(1 + }\frac{3.5}{100})^{10} \\ A=890(1.035)^{10} \\ A=890(1.410598) \\ A=1255.432897 \\ A\cong1255.43\text{ ( nearest hundredth)} \end{gathered}\)The value of the quantity after 99 years is 1255.43
A result is called "statistically significant" whenever. O The null hypothesis is true. O The significant level a = 0.05. O The p-value Greaterthanorequalto 0.05. O The p-value is less than the significant level.
A result is called "statistically significant" when the p-value is less than the significant level, typically 0.05.
This means that there is less than a 5% chance that the results are due to chance alone, and suggests that there is a real effect present in the data.
The Null Hypothesis is the assumption that there is no significant difference between the measured phenomenon and a certain value or set of values. A statistically significant result means that the observed data are inconsistent with the assumption of no difference, or no effect.
To know more about Null Hypothesis click on the link provided below:
https://brainly.com/question/28920252#
#SPJ4
Say, for example, the correlation is 0.75 between fat content (measured in grams) and cholesterol level (measured in milligrams) for 20 different brands of American cheese slices. If cholesterol level were changed to being measured in grams (where 1 gram = 1000 milligrams), what effect would this have on the correlation?
If cholesterol level were changed to being measured in grams instead of milligrams, the correlation between fat content and cholesterol level would not be affected.
This is because correlation is a measure of the strength and direction of the linear relationship between two variables, and converting the units of measurement does not change the underlying relationship between the variables. So, the correlation coefficient of 0.75 would remain the same whether cholesterol level is measured in milligrams or grams.
The correlation between fat content and cholesterol level for the 20 different brands of American cheese slices is 0.75. If you change the measurement of cholesterol level from milligrams to grams (1 gram = 1000 milligrams), it will not affect the correlation. The correlation coefficient will remain 0.75, as it is unit-less and only represents the strength and direction of the relationship between the two variables.
Visit here to learn more about correlation coefficient : https://brainly.com/question/27226153
#SPJ11
in the right triangle abc, the median to the hypotenuse has a length of 15 units and the altitude to the hypotenuse has a length of 12 units. what is the length of the shorter leg of the triangle abc?
The length of the shorter leg of the triangle ABC is approximately 24.49 units. Let's denote the right triangle ABC, where C is the right angle.
Let D be the midpoint of AB, and E be the foot of the altitude from C to AB. Then we have:
CD = 1/2 AB (definition of median)
CE = 12 (given altitude to the hypotenuse)
Let x be the length of the shorter leg of the triangle ABC. Then we have:
AE = x (definition of altitude)
EB = AB - x (definition of complementary leg)
By the Pythagorean theorem, we have:
AC^2 = AB^2 + BC^2
(2CD)^2 = AB^2 + x^2
AB^2 = 4CD^2 - x^2
By the similarity of triangles AEC and ABC, we have:
CE/AC = AE/AB
12 / (AB + BC) = x / AB
AB = x / (12/x + 1)
Substituting AB into the previous equation, we get:
4CD^2 - x^2 = x^2 / (12/x + 1)^2
Simplifying and solving for x, we get:
x^4 - 576x^2 - 14400 = 0
This is a quadratic equation in x^2, so we can solve for it using the quadratic formula:
x^2 = [576 ± sqrt(576^2 + 4*14400)] / 2
x^2 = [576 ± 624] / 2
Since x is a length, we take the positive square root:
x^2 = 600
x ≈ 24.49
Therefore, the length of the shorter leg of the triangle ABC is approximately 24.49 units.
Learn more about triangle here:
https://brainly.com/question/2773823
#SPJ11
Part C
What is the area of the whole target?
Select the correct answer.
A) 38
B) 144
C) 361
D) 400
Answer:
see the attachment photo.
Answer:
I believe it would be Option A) 38
Multiply the following fractions.
<(SOLUTION NEEDED)>
Answer:
answer is in explanation
Step-by-step explanation:
with multiplication of fractions just have to multiply horizontally across.
Kit is baking cakes. She has 5 cups of sugar and each cake needs 3/4 cup of sugar. Determine the number of cakes Kit can make
Find 5÷3/4
Express your answer in simplest fraction form.
Answer:
Step-by-step explanation:
Im sorry I think it might be 2/4
Answer:
Step-by-step explanation:
To find the number of cakes Kit can make, we need to divide the total amount of sugar (5 cups) by the amount of sugar required for each cake (3/4 cup).
5 ÷ 3/4 = (5 × 4/3) ÷ (3/4) = 20/3 ÷ 3/4 = 20/3 × 4/3 ÷ 3/4 = 20/3 ÷ 3/3 ÷ 4/4 = 20/3 ÷ 1 ÷ 4/4 = 20/3 ÷ 1 ÷ 1 = 20/3 ÷ 1 = 20/3= 6 2/3 cakes
So Kit can make 6 2/3 cakes. This fraction cannot be reduced further, so it is the final answer.
what is 30 = –5d – 5
Answer:
-7
Step-by-step explanation:
30=-5d-5
-5d=30+5
-5d=35
d=35/-5
d=-7
As you have seen, relativistic calculations usually involve the quantity When is appreciably greater than we must use relativistic formulas instead of Newtonian ones. For what speed (in terms of is the value of greater than (b) 10
greater than 1 ; (c) 100
greater than 1
The value of γ is greater than 1 for any v > 0, greater than 10 for v > 0.995c, and greater than 100 for v > 0.99995c.
To determine for what speed (in terms of c) the value of γ is greater than 1, 10, and 100, we'll use the formula for the Lorentz factor (γ):
γ = 1 / √(1 - v²/c²)
where v is the speed and
c is the speed of light.
(a) For γ > 1:
Since γ is always greater than 1 for any speed v greater than 0, we can say that γ is appreciably greater than 1 for any v > 0.
(b) For γ > 10:
We need to solve the equation 10 = 1 / √(1 - v²/c²) for v/c:
Squaring both sides, we get 100 = 1 / (1 - v²/c²).
Now, solve for v²/c²: v²/c² = 1 - 1/100 = 99/100.
So, v/c = √(99/100), which implies v > 0.995c for γ > 10.
(c) For γ > 100:
Similar to (b), solve the equation 100 = 1 / √(1 - v²/c²) for v/c:
Squaring both sides, we get 10000 = 1 / (1 - v²/c²).
Now, solve for v²/c²: v²/c² = 1 - 1/10000 = 9999/10000.
So, v/c = √(9999/10000), which implies v > 0.99995c for γ > 100.
To know more about "Speed" refer here:
https://brainly.com/question/8025703#
#SPJ11
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by f(x) = (x - 1)^-1/4 and the x-axis on the interval (1, 6] is revolved about the x-axis. Set up the integral that should be used to find the volume of the solid. Use increasing limits of integration. (Type exact answers.) Find the volume or state that it does not exist. Select the correct answer and, if necessary, fill in the box to complete your choice. A. The volume is cubic units. (Type an exact answer.) B. The volume does not exist.
The correct option is A. The volume is 6.77 cubic units
The function and interval given are f(x) = (x - 1)^-1/4 and the x-axis on the interval (1, 6].
We want to find the volume of the solid of revolution when the region is rotated about the x-axis.
Let's consider the graph of the function: graph{(x-1)^(-1/4) [-10, 10, -5, 5]}
To set up the integral to find the volume of the solid of revolution, we can use the disk method.
We need to integrate the area of each disk perpendicular to the x-axis from x = 1 to x = 6.
The area of a disk is given by the formula: A = πr²
where r is the radius of the disk and is equal to f(x) in this case.
Therefore, the area of a disk is: A = πf(x)²
Let's substitute f(x) into this formula and integrate from x = 1 to x = 6 to get the volume of the solid.
We have The integral that should be used to find the volume of the solid is given as:
V = ∫₁⁶ πf(x)² dx
We substitute f(x) = (x - 1)^(-1/4) into this expression and integrate to get the volume.
We have: V = ∫₁⁶ π(x - 1)^(-1/2) dx
Let u = x - 1, so that du/dx = 1 and dx = du.
When x = 1, u = 0, and when x = 6, u = 5.
Therefore, we have: V = ∫₀⁵ πu^(-1/2) du= 2π[u^(1/2)]₀⁵= 2π(√5 - 1) ≈ 6.77 cubic units.
The volume of the solid of revolution when the region is rotated about the x-axis is approximately 6.77 cubic units.
Thus, the correct option is A. The volume is 6.77 cubic units.
To know more about disk method visit:
https://brainly.com/question/28184352
#SPJ11
Sam solved the equation 6x - 8 = 16 below. Find her error and solve it correctly.
If (6*1.33) - 8 equals anything, it's -0.02
If you want your answer to be 16, X must equal 4
Rick bought 3 shirts for $18 each, 2 pair of socks for $3.99 a pair, and a pair of slacks for $45.00. The sales tax rate is 8.5%. How much did he pay? and how did you find it?
Step-by-step explanation:
shirts=3×18=$54socks=$3.99slacks=$45 =total sale =$102.99 sales tax=8.5%÷100=0.085=0.085×102.99=8.754
total=8.754+102.99111.744
determine the set of points at which the function is continuous. f(x, y) = xy 8 ex − y
The set of points at which the function f(x, y) = xy/(8ex − y) is continuous is the set of all points (x, y) such that 8ex ≠ y.
How we find the set of points where the function f(x, y) = xy\(^8ex\) - y is continuous.To determine the set of points at which the function is continuous, we need to check if the limit of the function exists and is equal to the value of the function at that point.
Taking the limit of the function as (x,y) approaches (a,b) gives:
lim_(x,y)→(a,b) f(x,y) = lim_(x,y)→(a,b) xy/8ex-y
Using L'Hopital's rule, we can find that the limit is equal to \(ab/8e^(b-a)\).
The function is continuous for all points (a,b) in \(R^2\).
Learn more about set of points
brainly.com/question/7876320
#SPJ11
whats 78,563 divided by 98
Ty for whoever helps me <3
Answer:
801.66
Step-by-step explanation:
calculator
Answer:
801.6632653061
Step-by-step explanation:
.......
Determine the algebraic degree of the following (7,7)-function, where a is a primitive element of F27. Is it linear, affine, quadratic or cubic? Explain your answer. (5%)
F(x) = alpha ^ 49 * x ^ 37 + alpha ^ 52 * x ^ 28 + alpha ^ 81 * x ^ 13 + alpha ^ 26 * x ^ 9 + alpha ^ 31 * x
The highest exponent of x in F(x) is 37, which means the algebraic degree of the function is 37.
The function F(x) is a cubic function.
Here, we have,
given function is:
F(x) = α⁴⁹ * x³⁷ + α⁵² * x²⁸ + α⁸¹ * x¹³ + α²⁶ * x⁹ + α³¹ * x
To determine the algebraic degree of the given (7,7)-function F(x), we need to find the highest exponent of x in the function.
F(x) = α⁴⁹ * x³⁷ + α⁵² * x²⁸ + α⁸¹ * x¹³ + α²⁶ * x⁹ + α³¹ * x
The algebraic degree of a polynomial function corresponds to the highest exponent of the variable in the function.
Linear functions have an algebraic degree of 1, affine functions have an algebraic degree of 1 or 0, quadratic functions have an algebraic degree of 2, and cubic functions have an algebraic degree of 3.
so, we get,
The highest exponent of x in F(x) is 37, which means the algebraic degree of the function is 37.
Therefore, the function F(x) is a cubic function.
To learn more on function click:
brainly.com/question/21145944
#SPJ4
The measure of an angle is 100.3°. What is the measure of its supplementary angle?
Answer:
79.7°
Step-by-step explanation:
You hava to do this =
\(180-100.3=79.7\)
Answer:
79.7°
Step-by-step explanation:
Supplementary angles add up to 180°
100.3 + x = 180
Subtract 100.3 from both sides
x = 79.7°
Aimee and Stan work in the same department for a large corporation. They are curious about the proportion of their coworkers who have children. Aimee obtains a list of all the workers in the department, randomly picks 20 names from the list, and asks those coworkers if they have children. She finds that 72% of those surveyed have children. Stan waits in the break room one morning and asks the first 20 coworkers that pass by if they have children. He finds that 85% of those surveyed have children. Which result is the better estimate of the proportion of coworkers who have children?
Neither result is a good estimate.
85%
72%
Both results are equally good estimates.
Answer:
I think 40 percent
Step-by-step explanation:
A survey of 539 adults aged 18-24 year olds was conducted in which they were asked what they did last Friday night. It found:
189 watched TV
163 hung out with friends
29 watched TV and ate pizza, but did not hang out with friends
49 watched TV and hung out with friends, but did not eat pizza
36 hung out with friends and ate pizza, but did not watch TV
30 watched TV, hung out with friends, and ate pizza
60 did not do any of these three activities
How may 18-24 year olds (of these three activities) only ate pizza last Friday night?
Your Answer:
Answer:
95 people ate pizza
Step-by-step explanation:
Add the ones highlighted
What is the area of this triangle?
Answer:
sorry I don't know buddy but have a nice day
Step-by-step explanation:
2-_7372773648++_+$
-5/3 x(-1/8)weurEzzrtx
Answer:
-5/3 x (-1/8 )= 5/24 = 0.2083333
Step-by-step explanation:
Make and test a conjecture about the quotient of a number and its reciprocal the quotient of a number and its reciprocal is?
We conclude that the conjecture that the quotient of a number and its reciprocal is always equal to 1 is not correct.
How to determine if the conjecture that the quotient of a number and its reciprocal is always equal to 1Conjecture: The quotient of a number and its reciprocal is always equal to 1.
To test this conjecture, let's consider a specific number, x, and its reciprocal, 1/x.
According to the conjecture, the quotient of x and its reciprocal should be 1.
Let's perform the calculation:
\(x / (1/x) = x * x/1 = x^2\)
Based on the calculation, we see that the quotient of x and its reciprocal simplifies to x^2, not necessarily equal to 1. Therefore, the conjecture is not true in general.
Hence, we conclude that the conjecture that the quotient of a number and its reciprocal is always equal to 1 is not correct.
Learn more about conjecture at https://brainly.com/question/14392383
#SPJ4
Place these fractions in order from least to greatest: 3/8 , 1/4 , 1/2 , 2/3 , 5/6 , 1 1/2 , 1 5/8
Answer:
it’s in order but switch the 3/8 and the 1/4?
Step-by-step explanation:
,Encontrar cada razon trigometrica par a eL
anguloB
C=13
b=5
B=?
Sen=
Cos=
Tan=
Answer:
\( {a}^{2} + {b}^{2} = {c}^{2} \\ {a}^{2} + {5}^{2} = {13}^{2} \\ {a}^{2} + 25 = 169 \\ {a}^{2} = 169 - 25 \\ {a}^{2} = 144 \\ a = 12\)
\( \sin(B) = \frac{Opposite}{hypotenuse} = \frac{5}{13} \\ \\ \\ \cos(B) = \frac{adjacent}{hypotenuse} = \frac{12}{13} \\ \\ \\ \tan(B) = \frac{opposite}{adjacent} = \frac{5}{12} \)
7/14 in its simplist form
Answer:
1/2
Step-by-step explanation:
what involves asking questions and answering those questions using statistical and quantitative tools for explanatory and predictive analysis?
A process of analysing, purifying, manipulating, and modelling data in order to find relevant information, come to conclusions, and enhance decision-making is known as data analytics.
It entails posing queries and providing answers utilising quantitative and statistical methods for explanatory and prescriptive analysis. Descriptive, diagnostic, predictive, and prescriptive analytics are the four basic categories of data analysis.
Diagnostic analytics is used to determine the reason why something occurred, whereas descriptive analytics is used to report what has already occurred.
The use of predictive analytics, on the other hand, enables the prediction of likely future events. Last but not least, prescriptive analytics is employed to decide what steps should be taken in order to accomplish a particular result or goal in light of the knowledge gleaned from descriptive, diagnostic, and predictive analytics.
By using these different types of analytics, individuals will be able to gather and analyze data to better understand trends, identify problems, and make informed decisions.
Know more about Data analytics here:
https://brainly.com/question/32575972
#SPJ11
Smith Automotive needs to hire a new mechanic. They decide to place an
ad in the Springfield Herald. A classified ad in the Springfield Herald costs
$45 for the first five lines. There is a charge of $5 for each additional line.
Answer:
y = 45 + 5(x - 5)
where y is the total cost of the ad, and x is the total number of lines in the ad
Step-by-step explanation:
Let x = number of lines in the ad
Let y = total cost
If the cost of the ad is $45 for the first 5 lines and $5 for each additional line then the expression for the total cost of the ad is:
y = 45 + 5(x - 5)
Answer:
equation: y = 5(x-5) + 45
Explanation:
Here "y" represents the total money earned. "x" represents the earning from additional line. the constant variable is "45" and does not change.