Answer:
t > 3
Step-by-step explanation:
3(2t - 6) > -2(3t - 9)
Distribute
6t - 18 > -6t + 18
+6t +6t
12t - 18 > 18
+18 +18
12t > 36
divide both sides by 12
t > 3
hope this helps!!!
The binomial (x + 5) is a factor of x2 + 8x + 15. What is
the other factor?
2
+x
+x
(x + 3)
(x + 7)
(x + 12)
(x + 13)
+
Answer:x+3
Step-by-step explanation:
5×3=15
5+3=8x
Answer:
A
Step-by-step explanation:
the expected value for a binomial probability distribution is group of answer choices e(x) = pn(1 - n) e(x) = p(1 - p) e(x) = np e(x) = np(1 - p)
The correct answer is e(x) = np. The expected value for a binomial probability distribution is given by the formula e(x) = np, where n represents the number of trials and p represents the probability of success in each trial.
The expected value is a measure of the average or mean outcome of a binomial experiment. It represents the number of successful outcomes one would expect on average over a large number of trials.
The formula e(x) = np arises from the fact that the expected value of a binomial distribution is the product of the number of trials (n) and the probability of success (p) in each trial. This is because in a binomial experiment, the probability of success remains constant for each trial.
Therefore, to calculate the expected value of a binomial probability distribution, we multiply the number of trials by the probability of success in each trial, resulting in e(x) = np.
Learn more about binomial here:
https://brainly.com/question/30339327
#SPJ11
it says to determine the scale factor and center of dilation that will carry ABCD onto A’B’C’D’ please help im stuck
Answer:
3/2
Step-by-step explanation:
\(A'B'=6, AB=4\)
The scale factor is the ratio of the lengths of a pair of corresponding sides. (image to preimage).
Thus, the scale factor is \(6/4=3/2\).
Here is a trig fact: cos(π) = -1 (7.1) Write THREE equations that also equal -1. Each equation should be different than the one above and use a different trig function. (7.2) Write THREE different trig equations that also equal -1. Each equation should use co- sine, but be different than cos(π) and each other.
The three different equations are:
Equation 1: cos (0) = 1
Equation 2: cos (2π) = 1
Equation 3: cos (-2π) = 1
Explanation:
Given, cos (π) = -1. The other trigonometric functions that we can use are sine, tangent, cosecant, secant and cotangent.
So, the three equations that equal -1 are:
Equation 1: sin (3π/2) = -1
We know that, sin (3π/2) = sin (π/2 + π) = -cos (π/2) = -1
Equation 2: tan (5π/2) = -1
We know that, tan (5π/2) = tan (π/2 + 2π) = -cot (π/2) = -1
Equation 3: sec (2π) = -1
We know that, sec (2π) = sec (0 + 2π) = sec (0) = -1
Using cosine function, the three different equations are:
Equation 1: cos (0) = 1
Equation 2: cos (2π) = 1
Equation 3: cos (-2π) = 1
Know more about trigonometric functions here:
https://brainly.com/question/25618616
#SPJ11
The radius of a circle is 3 5/12 inches
What is the diameter of the circle?
Answer:
6 5/6
Step-by-step explanation:
diameter is radius multiplied by 2
* means multiplied by
3 5/12 = 41/12
41/12 * 2 = 82/12 = 6 5/6
Answer: 6 5/12
Step-by-step explanation: i just took the k12 test and this is the corret answer
A card game goes like this: You draw a card from a 52-card deck. If it is a face card (jack, queen or king), you win $4; otherwise, you lose $2. What is your expected value for this game
For a card game with a pack of total 52 cards, where success is that drawn card is face card. The excepted value for this game is - 0.615.
In probability theory, Expected Value is the estimated gain or loss in partaking in an event many times. It is calculated by the formula written as \(E(X) = \sum P(X) × X \)
where, X is the number of trials and
P(x) is the probability of success.In other words, sum of multiplication of probability of gain to gain amount and multiplication of probability of loss to loosing amount. We have a experiment card game. There is a total 52 card deck. Let's consider an event X that one card is drawn from 52.
Number of face cards in pack of 52 = 3× 4 = 12
Number of non- face cards in pack of 52 = 52 - 12 = 40
Probability that drawn card is face card or probability of success = 12/52 = \( \frac{ 3}{13}\)
Probability that drawn card is not face card or probability of loss = \( \frac{40}{52} = \frac{10}{13} \)
winning amount on probability of success= $4
So, excepted value = \(4 \times \frac{3}{13} - 2 \times \frac{10}{13} \)
= \( - \frac{8}{13} \) = - 0.615
Hence, required value is - 0.615.
For more information about excepted value, visit :
https://brainly.com/question/10675141
#SPJ4
help please i really appreciate it
The correct statement regarding the translation of the functions f(x) and h(x) is given as follows:
The graph of h is a translation of 4 units left and 7 units down of f(x).
What is a translation?A translation happens when either a figure or a function are moved horizontally or vertically on the coordinate plane.
The four translation rules for functions are defined as follows:
Translation left a units: f(x + a).Translation right a units: f(x - a).Translation up a units: f(x) + a.Translation down a units: f(x) - a.The meaning of each translation from function f(x) to function h(x) is given as follows:
x -> x + 4 -> 4 units left.y -> y - 7 -> 7 units down.More can be learned about translations at brainly.com/question/28174785
#SPJ1
Lupe needs to make a poster that is 2 m by 4 m for the big game. The cost of the paper is $1.75. Later she needs another poster with dimensions 1 m by 2 m. What is the paper for this poster likely to cost
Answer:
$0.42
Step-by-step explanation:
Given data
Dimension
Length=4m
Width=2m
Cost= $1.75
Area= 4*2= 8m^2
Cost per area=1.75/8
Cost per area=$0.21 per m^2
The new poster's dimension
Lenght =2m
Width= 1m
Area= 2*1= 2m^2
Hence if a square meter cost $0.21
Then 2 square meter will cost x
cross multiply
2*0.21=x
x=$0.42
Hence the new poster will cost $0.42
the glass forms a cylinder with a radius of 1.5 inches. the volume of the glass is approximately 45.95 cubic inches. what is the height of the drinking glass in inches? round your answer to the nearest tenth.
Answer:6.80
Step-by-step explanation:
pLZ HELP FIRST ANWSER GETS BRAINLYEST
Answer:
684
Step-by-step explanation:
1/4 * 9 - |6| 9 + 3\(\sqrt{9}\)
935050 is divisible by which all numbers
Step-by-step explanation:
2, 5, 10
by 2 because it ends with a 0
by 5 because it ends with a 0
by 10 because it ends with a 0
Find the missing measures in each diagram.
Answer:
X = 65°
Y = 75°
Z = 65°
Step-by-step explanation:
Hello!
Angle Y and the angle measuring 75 degrees are corresponding angles, and corresponding angles are congruent to each other in degree measure.
There is also another set of corresponding angles, and those are Angle Z and Angle X.
Since Angle Y and 75° are corresponding, we can state that Angle Y is also 75°. We can now find Angle Z by subtracting 40° and 75° from 180°. This is because the sum of angles in a triangle is 180°.
Angle Z:180° - 40° - 75°180°-115°65°The measure of Angle Z is 65°. We know that Z and X are corresponding, so X is also 65°.
Can someone help plss
Answer:
Yes
Step-by-step explanation:
Replace x with -7 and y with 1 in the original inequality and solve
1 < -7/2 + 9
1 < -3.5 +9
1 < 5.5 (Since this statement is true, the point (-7, 1) is a solution)
6.4 divided by 43.52
Answer:
0.14705882352
Step-by-Step:
Just use a calculator and your answer should pop up.
Can somebody help me? I don’t know if I need to break this down or not. I will give all my points please help :(
A function is defined by f (x) = 6 x + 1.5. What is f(2.5)?
Step-by-step explanation:
6×(2.5)+1.5
15+1.5
16.5
or
f(x)= 6x+1.5
f(2.5)= 6(2.5)+15
f(2.5)=16.5
You're welcome please add me as ur friend and brainiest please
use the laplace transform to solve the given integral equation. f(t) + t (t − τ)f(τ)dτ 0 = t
f(t) = L^(-1){1 / (s^2 + s)} Inverse Laplace transform tables or techniques, determine the time-domain function f(t) that satisfies the given integral equation.
The Laplace transform is a powerful mathematical tool that can be used to solve complex integral equations, like the one you've provided: f(t) + t * ∫(t - τ)f(τ)dτ = t.
To solve this equation using the Laplace transform, follow these steps:
1. Apply the Laplace transform to both sides of the equation. The Laplace transform of f(t) is F(s), and the Laplace transform of t is 1/s^2. The integral equation becomes:
L{f(t)} + L{t * ∫(t - τ)f(τ)dτ} = L{t}
F(s) + L{t * ∫(t - τ)f(τ)dτ} = 1/s^2
2. Next, apply the convolution theorem to the integral term. The convolution theorem states that L{f(t) * g(t)} = F(s) * G(s). In this case, f(t) = t and g(t) = (t - τ)f(τ):
F(s) + L{t} * L{(t - τ)f(τ)} = 1/s^2
3. Now, substitute the known Laplace transforms for t and f(t):
F(s) + (1/s^2) * F(s) = 1/s^2
4. Combine the terms containing F(s):
F(s) * (1 + 1/s^2) = 1/s^2
5. Isolate F(s) by dividing both sides of the equation by (1 + 1/s^2):
F(s) = (1/s^2) / (1 + 1/s^2)
6. Simplify the expression for F(s):
F(s) = 1 / (s^2 + s)
7. Finally, apply the inverse Laplace transform to F(s) to obtain the solution for f(t):
f(t) = L^(-1){1 / (s^2 + s)}
Using inverse Laplace transform tables or techniques, you can determine the time-domain function f(t) that satisfies the given integral equation.
To learn more about Inverse Laplace click here
brainly.com/question/30404106
#SPJ11
1) Use summation notation to write the series 2+4+6+18... for ten terms
2) Use the summation notation to write the series 49+54+59+... for 14 terms
a) 14
Σ (49+5n)
n-1
b) 13
Σ (44+5n)
n-1
c) 14
Σ (44+5n)
n-1
d) 44
Σ (49+5n)
n-1
3) Solve
4
Σ (n+4)
n-1
4) Find the 2nd and 3rd terms of the sequence
-7, _, _, -22, -27
To accurately summate for all ten numbers, the expression reads: Σ(2 + (n - 1) * 2) for n = 1 to 10.
How to solveAn arithmetic sequence with a common difference of two gives us the following set of numbers:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
To fully explain this pattern using summation notation, we can apply the general formula for the nth term of any such sequence.
This formula is expressed by an = a1 + (n - 1) * d, wherein "an" stands for the nth term, "a1" represents the initial number in the sequence, "n" reflects the position of the said term within the series, and finally, "d" dictates the standard rate of difference between the terms.
Applying these variables to this example, it can be seen that a1 is 2, and d equals 2.
Thus, the equation simplifies to: an = 2 + (n - 1) * 2.
To accurately summate for all ten numbers, the expression reads: Σ(2 + (n - 1) * 2) for n = 1 to 10.
Read more about summation notation here:
https://brainly.com/question/23742399
#SPJ1
x³ + y³ + x³ = k
can anybody help solve this
Answer:
The answer is k equals 2x to the third power and Y to the third power
Answer:
X€R
Y€R
Step-by-step explanation:
x³+y³+x³=k
2x³+y³=k
K=2x³+y³
So
X€R
Y€R
Find the area for all of these numbers
Answer:
The Answer is 29cm
Step-by-step explanation:
The area of this shape is made from two shapes.
Shape one is a rectangle with the dimensions 2cm by 4cm
2x4 = 8
So the area of rectangle 1 is 8
The other rectangle has the dimensions 4cm by 7cm
Because you have to account for the other triangle not being there (solved)
4x7 = 21
21+8
29cm
8. Jackson bought three CDs. A week later half of all his CDs were
destroyed in a fire. There are now only 24 CDs left. How many did
he start?
Maribel sold 20% of the cupcakes she made. If she sold 35 cupcakes, then she made how many
cupcakes in all.
Answer:
20% x 5= 100%
35 x 5= 175
she has a total of 175 cupcakes
evaluate the triple integral. e (x − y) dv, where e is enclosed by the surfaces z = x2 − 1, z = 1 − x2, y = 0, and y = 8
This integral is quite complex and does not have an analytical solution is 2pi ∫\(0^2\) \(e^{-r sin(\theta)\)) r (1 - 2\(r^2\)\(cos^{2}(\theta)\) (2\(-r^2\)) dr dtheta
To evaluate the triple integral of e^(x-y) over the region enclosed by the surfaces z=\(x^2-1, z=1-x^2, y=0,\) and y=8, we will use the cylindrical coordinates since the region is symmetric about the z-axis.
In cylindrical coordinates, we have:
x = r cos(theta)
y = r sin(theta)
z = z
The limits of integration for r, theta, and z are as follows:
0 <= r <= 2
0 <= theta <= 2pi
\(x^2\)-1 <= z <= 1-\(x^2\)
Substituting the cylindrical coordinates into the integral, we get:
∫∫∫ e^(x-y) dv = ∫∫∫ \(e^{(r cos(\theta) - r sin(\theta))\)r dz dr dtheta
Now, we need to determine the limits of integration for z in terms of r. Solving for z in the two equations that define the boundaries of the region, we get:
z =\(x^2\)- 1 -> z = \(r^2\)\(cos^2(\theta)\) - 1
z = 1 - \(x^2\) -> z = 1 - \(r^2\) \(cos^2(\theta)\))
Thus, the limits of integration for z become:
\(r^2 cos^2\)(theta) - 1 <= z <= 1 -\(r^2\) \(cos^2(\theta)\)
Substituting these limits into the integral and performing the integrations, we get:
∫∫∫ \(e^{r cos(\theta)\) - r sin(theta)) r (1 - \(r^2\) \(cos^2(\theta)\)) - \(r^2\) \(cos^2(\theta))\) dz dr dtheta
= ∫\(0^8\)∫\(0^2\)pi ∫\(0^2\) \(e^{r cos(\theta)\) - r sin(theta)) r (1 - 2\(r^2\) \(cos^2(\theta))\)dz dr dtheta
= 2pi ∫\(0^2\) \(e^{-r sin(\theta))\)r (1 - 2\(r^2\) \(cos^2(\theta))\) (2-\(r^2\)) dr dtheta
This integral is quite complex and does not have an analytical solution. Therefore, we need to evaluate it numerically using a computer or calculator.
To learn more about triple integral visit:https://brainly.com/question/30404807
#SPJ11
two ladders, one that is 6 6 feet long and one that is 9 9 feet long, are leaning up against a building. both ladders are leaning so that the angle they make with the ground is the same. the shorter ladder touches the wall at a point that is 5 5 feet 9 9 inches above the ground. how much higher above the ground does the second ladder touch the wall above the shorter ladder?
The second ladder touches the wall approximately 11 feet higher than the shorter ladder, or equivalently, around 8 feet 8 inches higher.
Let's denote the height at which the second ladder touches the wall as h. We can set up a proportion based on the similar right triangles formed by the ladders and the building:
(6 6 feet) / (h) = (9 9 feet) / (5 5 feet 9 9 inches + h)
To solve for h, we can cross-multiply and solve the resulting equation:
(6 6 feet) * (5 5 feet 9 9 inches + h) = (9 9 feet) * (h)
Converting the measurements to inches:
(66 inches) * (66 inches + h) = (99 inches) * (h)
Expanding and rearranging the equation:
4356 + 66h = 99h
33h = 4356
Solving for h:
h = 4356 / 33 = 132 inches
Converting back to feet and inches:
h ≈ 11 feet
Therefore, the second ladder touches the wall approximately 11 feet higher than the shorter ladder, or equivalently, around 8 feet 8 inches higher.
Learn more about proportion here:
https://brainly.com/question/31548894
#SPJ11
How to Use the Order of Operations Calculator?
You will see what the calculator thinks you entered (which may be a little different to what you typed), and then a step-by-step solution. There can be more than one way to find a solution.
What is meant by solution?
Any mixture of one or more solutes that have been dissolved in a solvent is referred to as a solution. To create a homogenous mixture, a solute must dissolve in a solvent. To create a homogenous mixture, a solute must dissolve in a solvent.In chemistry, a solution is a homogeneous mixture of two or more compounds in their relative proportions. The composition of the solution can be continually changed up to the solubility limit. Although solutions of gases and solids are possible, the term "solution" is most frequently used to refer to the liquid condition of matter.A homogenous mixture of two or more components with particles smaller than 1 nm is referred to as a solution.To learn more about solution refer to
https://brainly.com/question/22688504
#SPJ4
Multiplication and dvision which number sentence is true? a. b. c. d.
b. and d.
Step-by-step explanation:
the sentence is true
PLEASE HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
What type of polynomial is: −2/3b*3
A. quadratic
B. linear
C. quartic
D. cubic
The type of polynomial that - 2 / 3 x b³ is D. Cubic polynomial.
What is a cubic polynomial ?A cubic polynomial is a type of polynomial function in algebra that has a degree of three. Cubic polynomials can take many different forms and can have multiple real roots, complex roots, or no real roots at all.
A quadratic polynomial contains a degree of 2, a linear polynomial contains a degree of 1, and a quartic polynomial contains a degree of 4. In this case, the highest degree of the variable b is 3, which makes it a cubic polynomial.
Find out more on polynomials at https://brainly.com/question/14779377
#SPJ1
The entire graph of the function g is shown in the figure below. Write the domain and range of g using interval notation.
The domain and the range of the function are [-3, 2) and (-3, -5], respectively
Calculating the domain and range of the graph?From the question, we have the following parameters that can be used in our computation:
The graph
The above graph is an curved function
The rule of an function is that
The domain is the set of all input values
In this case, the domain is [-3, 2)
For the range, we have
Range = (-3, 5]
Read more about domain and range at
brainly.com/question/27910766
#SPJ1
True or False? suppose bx and dx both contain positive integers. if adding them produces a negative result, the overflow flag will be set.
True.
If adding two positive integers results in a negative number, it means that an overflow has occurred. The overflow flag is set when the result of an operation is too large to be represented with the given number of bits.
If bx and dx both contain positive integers and adding them produces a negative result, the overflow flag will be set. This is because when two positive integers are added, the result should also be a positive integer. If the result is negative, it means there was an overflow during the addition process, and the overflow flag will be set to indicate this issue.
Learn more about overflow flag here: brainly.com/question/28179547
#SPJ11
4. What is the rate of change of the linear function that has a graph that passes
through the points (-1, 3) and (-2,-4)?
The rate of change of the function that has a graph that passes
through the points (-1, 3) and (-2,-4) is slope and is equal to 7.
The slope of a line is outlined because the amendment in y coordinate with relevancy the amendment in x coordinate of that line. cyber web amendment in y coordinate is Δy, whereas cyber web amendment within the x coordinate is Δx. The slope of a line is calculated victimisation 2 points lying on the line. Given the coordinates of the 2 points, we are able to apply the slope of line formula m = y₂ - y₁ / x₂ - x₁ where (x₁ ,y₁) are the coordinate of first point and (x₂ ,y₂) are the coordinate of second point.We have given two points (-1, 3) and (-2,-4) .
Rate of change of graph is given by slope
Using slope formula , we get
m = -4 - 3 / -2 - (-1)
m = -7 / -2 + 1
m = -7 / -1
m = 7
Learn more about slope here :
https://brainly.com/question/17248198
#SPJ9