Answer: The Answer I would stick with is 1/3 of red paint
Step-by-step explanation:
Think about, 7 cups of white paint turns into one. So now the red paint turns into 1/3 of how much it would normally be, And also if this is multiple choice please put the answer
I could be ethier 1/7, or 1/3...
They dont equal the same thing but I would recomend that you do the math and get a good understanding of what I explained.
Hope this helps (: Im sorry If im wrong.
Two points are:
A. always collinear and always coplanar.
B. always collinear and sometimes coplanar.
C. sometimes collinear and sometimes coplanar.
D. sometimes collinear and never coplanar.
find the values of x and y
Answer:
x=30
Step-by-step explanation:
dive 3x both sides then u should get 10
Which angle do ΔEBC and ΔADC share?
Answer:
The angle in C
Step-by-step explanation:
HELP DUE IN 20 MIN
Write an expression that represents the height of a tree that begins at 8.4 feet and increases by 3.5 feet per year. Let t represent the number of years.
___+___t
Answer:
8.4+3.5t
Step-by-step explanation:
8.4+3.5t
For the following set of data, find the percentage of data within 2 population standard deviations of the mean, to the nearest percent
chart is in the photo
Percentage of data within 2 population standard deviations of the mean is 68%.
To calculate the percentage of data within two population standard deviations of the mean, we need to first find the mean and standard deviation of the data set.
The mean can be found by summing all the values and dividing by the total number of values:
Mean = (20*2 + 22*8 + 28*9 + 34*13 + 38*16 + 39*11 + 41*7 + 48*0)/(2+8+9+13+16+11+7) = 32.68
To calculate standard deviation, we need to calculate the variance first. Variance is the average of the squared differences from the mean.
Variance = [(20-32.68)^2*2 + (22-32.68)^2*8 + (28-32.68)^2*9 + (34-32.68)^2*13 + (38-32.68)^2*16 + (39-32.68)^2*11 + (41-32.68)^2*7]/(2+8+9+13+16+11+7-1) = 139.98
Standard Deviation = sqrt(139.98) = 11.83
Now we can calculate the range within two population standard deviations of the mean. Two population standard deviations of the mean can be found by multiplying the standard deviation by 2.
Range = 2*11.83 = 23.66
The minimum value within two population standard deviations of the mean can be found by subtracting the range from the mean and the maximum value can be found by adding the range to the mean:
Minimum Value = 32.68 - 23.66 = 9.02 Maximum Value = 32.68 + 23.66 = 56.34
Now we can count the number of data points within this range, which are 45 out of 66 data points. To find the percentage, we divide 45 by 66 and multiply by 100:
Percentage of data within 2 population standard deviations of the mean = (45/66)*100 = 68% (rounded to the nearest percent).
Therefore, approximately 68% of the data falls within two population standard deviations of the mean.
for more such questions on population
https://brainly.com/question/30396931
#SPJ8
Which point of the given function corresponds with the minimum value of its inverse function? (–20, 8) (–10, 3) (0, –2) (8, –6)
The given function corresponds with the minimum value of its inverse function will be (–20, 8)
What is the minimum value of a function?
There will be minimum and maximum values for a function. The lowest y-value that the function reaches is the definition of a minimum value. The highest y-value that a function can attain is called a maximum value.
The functions arcsin(x) and cos(x) have a constant sum, 2, over the range [1,1].
Consequently, the issue is the same as determining the lowest and maximum values of (–20, 8)
Know more about function
https://brainly.com/question/22340031
#SPJ4
i. Show that = (a, b) and w = (-b, a) are orthogonal vectors. ii. Use the result in part i. to find two vectors that are orthogonal to √=(2, -3). iii. Find two unit vectors that are orthogonal to 7
i. Vectors u and w are orthogonal.
ii. The two vectors orthogonal to v = √(2, -3) are u = (3, 2) and w = (-2, 3).
iii. The two unit vectors orthogonal to 7 are u = (1, -1) / √2 and w = (1, 1) / √2.
i. To show that vectors u = (a, b) and w = (-b, a) are orthogonal, we need to demonstrate that their dot product is zero.
The dot product of u and w is given by:
u · w = (a, b) · (-b, a) = a*(-b) + b*a = -ab + ab = 0
ii. To find two vectors orthogonal to vector v = √(2, -3), we can use the result from part i.
Let's denote the two orthogonal vectors as u and w.
We know that u = (a, b) is orthogonal to v, which means:
u · v = (a, b) · (2, -3) = 2a + (-3b) = 0
Simplifying the equation:
2a - 3b = 0
We can choose any values for a and solve for b. For example, let's set a = 3:
2(3) - 3b = 0
6 - 3b = 0
-3b = -6
b = 2
Therefore, one vector orthogonal to v is u = (3, 2).
To find the second orthogonal vector, we can use the result from part i:
w = (-b, a) = (-2, 3)
iii. To find two unit vectors orthogonal to 7, we need to consider the dot product between the vectors and 7, and set it equal to zero.
Let's denote the two orthogonal unit vectors as u and w.
We know that u · 7 = (a, b) · 7 = 7a + 7b = 0
Dividing by 7:
a + b = 0
We can choose any values for a and solve for b. Let's set a = 1:
1 + b = 0
b = -1
Therefore, one unit vector orthogonal to 7 is u = (1, -1) / √2.
To find the second unit vector, we can use the result from part i:
w = (-b, a) = (1, 1) / √2
To learn more about the unit vector from the given link
brainly.com/question/28028700
#SPJ11
Blood Pressure Several research papers use a sinusoidal
graph to model blood pressure. Assuming that a person's heart beats 70 times per minute, the blood pressure P of an individual after seconds can be modeled by the function
P(t)= 20 sin +100(a) In the interval [0, 1], determine the times at which the blood pressure is 100 mmHg.
(b) In the interval [0, 1], determine the times at which the blood pressure is 120 mmHg.
(c) In the interval [0, 1], determine the times at which the blood pressure is between 100 and 105 mmHg.
(a) The times at which the blood pressure is 100 mmHg are t = 0 and t = 1/70.
b) The time at which the blood pressure is 120 mmHg is t = 1/140.
c)The times at which the blood pressure is between 100 and 105 mmHg are t = arcsin(1/4)/70π and t = 1 - arcsin(1/4)/70π
(a) To determine the times at which the blood pressure is 100 mmHg in the interval [0, 1], we need to find the values of t that satisfy the equation P(t) = 100:
100 = 20 sin(70πt) + 100
0 = 20 sin(70πt)
sin(70πt) = 0
70πt = nπ, where n is an integer
t = n/70
In the interval [0, 1], the possible values of n are 0 and 1. Therefore, the times at which the blood pressure is 100 mmHg are t = 0 and t = 1/70.
(b) To determine the times at which the blood pressure is 120 mmHg in the interval [0, 1], we need to find the values of t that satisfy the equation P(t) = 120:
120 = 20 sin(70πt) + 100
20 = 20 sin(70πt)
sin(70πt) = 1
70πt = (2n+1)π/2, where n is an integer
t = (2n+1)/140
In the interval [0, 1], the possible value of n is 0. Therefore, the time at which the blood pressure is 120 mmHg is t = 1/140.
(c) To determine the times at which the blood pressure is between 100 and 105 mmHg in the interval [0, 1], we need to find the values of t that satisfy the inequality 100 < P(t) < 105:
100 < 20 sin(70πt) + 100 < 105
0 < 20 sin(70πt) < 5
0 < sin(70πt) < 1/4
Since sin(70πt) is positive and less than 1/4 in the interval [0, 1], we need to find the values of t that satisfy the equation sin(70πt) = 1/4:
sin(70πt) = 1/4
70πt = arcsin(1/4)
t = arcsin(1/4)/70π
The times at which the blood pressure is between 100 and 105 mmHg are t = arcsin(1/4)/70π and t = 1 - arcsin(1/4)/70π.
Learn more about sinusoidal function:https://brainly.com/question/29529184
#SPJ11
Consuelo deposited an amount of money in a savings account that earned 6. 3% simple interest. After 20 years , she had earned $5’922 in interest. What was her initial deposit
Consuelo deposited an amount of money in a savings account that earned 6. 3% simple interest. After 20 years , she had earned $5’922 in interest then the initial deposit was $4700
Use the simple interest formula
I = P r t
where I = simple interest
P = principal
r= rate of interest
t= number of years
5922=Px6.3%x20
5922=Px1.26
P=5922/1.26
P=4700
learn more about of amount here
https://brainly.com/question/27054498
#SPJ4
A popular 24-hour health club, Get Swole, has 29 people using its facility at time t=0. During the time interval 0≤t≤20 hours, people are entering the health club at the rate E(t)=−0.018t 2
+11 people per hour. During the same time period people are leaving the health club at the rate of L(t)=0.013t 2
−0.25t+8 people per hour. a.) Is the number of people in the facility increasing or decreasing at time t=11 ? Explain your reasoning. b.) To the nearest whole number, how many people are in the health club at time t=20. c. At what time t, for 0≤t≤20, is the amount of people in the health club a maximum? Justify your answer.
a) The rate of people leaving the health club, L(t), can be calculated as:
L(11) = 0.013(11)^2 - 0.25(11) + 8
b) To find the number of people, we integrate the net rate of change over the time interval:
Number of People at t=20 = Integral of (E(t) - L(t)) dt, from t=0 to t=20
c) This can be done by finding the critical points of the net rate of change and evaluating them to determine whether they correspond to maximum or minimum values.
To determine whether the number of people in the facility is increasing or decreasing at time t=11, we need to compare the rates of people entering and leaving the health club at that time.
a) At time t=11 hours:
The rate of people entering the health club, E(t), can be calculated as:
E(11) = -0.018(11)^2 + 11
Similarly, the rate of people leaving the health club, L(t), can be calculated as:
L(11) = 0.013(11)^2 - 0.25(11) + 8
By comparing the rates of people entering and leaving, we can determine if the number of people in the facility is increasing or decreasing. If E(t) is greater than L(t), the number of people is increasing; otherwise, it is decreasing.
b) To find the number of people in the health club at time t=20, we need to integrate the net rate of change of people over the time interval 0≤t≤20 hours.
The net rate of change of people can be calculated as:
Net Rate = E(t) - L(t)
To find the number of people, we integrate the net rate of change over the time interval:
Number of People at t=20 = Integral of (E(t) - L(t)) dt, from t=0 to t=20
c) To determine the time t at which the number of people in the health club is a maximum, we need to find the maximum value of the number of people over the interval 0≤t≤20.
This can be done by finding the critical points of the net rate of change and evaluating them to determine whether they correspond to maximum or minimum values.
Let's calculate these values and solve the problem.
Note: Since the calculations involve a series of mathematical steps, it would be best to perform them offline or using appropriate computational tools.
Visit here to learn more about rate brainly.com/question/25565101
#SPJ11
need 8, and 9 which definitions go with the
description
In a salt where \( r^{+}=165 \) and \( r^{-}=297, r^{+} \)will occupy what kind of hole? tetrahedral octahedral cubic Any of the above 1 point Match each term with the best definition or description
The salt will acquire octahedral hole. Thus option B is correct .
Given,
\(r^{+} = 165\\ r^{-} = 297\)
Now,
Find the coordination number ,
Radius ratio = \(r^{+} / r^{-}\)
Substitute the values of radius of salt to get the coordination number .
Radius ratio = 165/297
Radius ratio = 0.556 .
If the radius ratio is between 0.414 and 0.732
Range of radius ratio : 0.414 < r < 0.732
Then coordination number is 6 . If the coordination number is 6 then it will acquire octahedral void .
Know more about coordination number,
https://brainly.com/question/31751524
#SPJ4
Ted can clear a football field of debris in 3 hours. Jacob can clear the same field in 2 hours. When they work together, the situation can be modeled by the equation, where t is the number of hours it would take to clear the field together.
1/3+1/2=1/t
How long will it take Ted and Jacob to clear the field together?
Ted can clear a football field in 3 hours, while Jacob can clear it in 2 hours. When they work together, the time it takes to clear the field can be determined by solving the equation 1/3 + 1/2 = 1/t.
Let's consider the equation 1/3 + 1/2 = 1/t, where t represents the number of hours it would take Ted and Jacob to clear the field together. To solve for t, we need to find a common denominator for the fractions on the left-hand side. The least common multiple (LCM) of 3 and 2 is 6.
By multiplying the first fraction by 2/2 and the second fraction by 3/3, we can rewrite the equation as (2/6) + (3/6) = 1/t. This simplifies to 5/6 = 1/t.
To isolate t, we can take the reciprocal of both sides, giving us t/1 = 6/5. Cross-multiplying, we find t = 6/5 = 1.2.
Therefore, it will take Ted and Jacob 1.2 hours (or 1 hour and 12 minutes) to clear the football field together.
Learn more about equation here:
brainly.com/question/29538993
#SPJ11
Answer both question please
Answer:
the estimation one
two numbers written in certain order
Step-by-step explanation:
Help me. This is hard.... T^T
Answer:
2 Sandwiches
Step-by-step explanation:
\(j = - 6s + 38 \\ 26 = - 6s + 38 \\ 26 - 38 = - 6s \\ - 12 = - 6s \\ 2 = s\)
Josiah plants vegetable seeds in rows. Each row has the same number of seeds in it. He plants more than one row of seeds. What could be the total number of seeds he plants?
The total number of seeds that Josiah would plant would be = nR×S
How to determine the total number of seeds that Josiah will plant?To determine the total number of seeds that Josiah will plant will be to add the seeds in the total number of rooms he planted.
Let each row be represented as = nR
Where n represents the number of rows planted by him.
Let the seed be represented as = S
The total number of seeds he planted = nR×S
Therefore, the total number of seeds that was planted Josiah would be = nR×S.
Learn more about multiplication here:
https://brainly.com/question/30340107
#SPJ1
4x²+4x-24 step by step
Answer:
factored form = 4(x−2)(x+3)
Step-by-step explanation:
4 is a factor of the entire equation so factor it out and it will leave U with the answer
2 Points
Chelsea saw an advertisement for a loan that offered 6 months, same as
cash. If she takes the loan, which of these scenarios is most likely to occur?
O
A. Chelsea won't be charged interest for the first 6 months of the
loan, but she will have to make payments for the first 6 months.
O
B. Chelsea will be charged interest for the first 6 months of the loan,
and she will also have to make payments for the first 6 months.
O
C. Chelsea will be charged interest for the first 6 months of the loan,
but she won't have to make payments for the first 6 months.
D. Chelsea won't be charged interest for the first 6 months of the
loan, nor will she have to make payments for the first 6 months.
Based on the information provided regarding same as cash loans, Chelsea won't be charged interest for the first 6 months of the loan, nor will she have to make payments for the first 6 months. (Option D)
A Same-As-Cash Loan refers to a short-term lending solution in which no interest or monthly payment are required to be paid during a set “Same-As-Cash” period. At the end of a predetermined period, the loan is paid off. Hence, the customer owes no interest or monthly payments during a set promotional period and pays the same amount on the loan as they would have paid up front with cash. These are interest deferred loans in which the loans interest still accrues during that promotional period, however if the customer pays off the entire principal balance before the period ends, they are not required to pay that interest. The advantage of these loans is that customers may spend the same amount they would have if they had paid with cash up front. Hence, if Chelsea opts for loan that offered 6 months, same as cash, there would be no requirement of payment or interest charged for the 6 months.
Learn more about Deferred loans:
https://brainly.com/question/25604976
#SPJ4
Can anyone help me plz thanks
Answer:I believe it is C
Step-by-step explanation:
Its -2 then gets decreased by 5
Answer:
\(optoin \: c. \: is \: correct\)
Let X and Y have the joint pdff(x,y)=x+y,0
Both X and Y do not have well-defined marginal pdfs due to the integration of the joint pdf resulting in infinity.
The given question states that X and Y have a joint probability density function (pdf) of f(x,y) = x+y, 0.
To find the marginal probability density functions of X and Y, we need to integrate the joint pdf over the respective variables.
Let's start with finding the marginal pdf of X.
To find the marginal pdf of X, we need to integrate the joint pdf f(x,y) over the variable Y, keeping X constant.
∫[0 to ∞] (x+y) dy
We integrate the function x+y with respect to y, treating x as a constant. The limits of integration are from 0 to positive infinity, as mentioned in the question.
Integrating the function x+y with respect to y, we get:
= xy + (\(y^2\))/2 |[0 to ∞]
Evaluating the integral at the limits of integration:
= x(∞) + (∞^2)/2 - x(0) - (\(0^2\))/2
Since (∞) is not a finite value, we consider it as a limit. Similarly, \((0^2)/2 equals 0.\)
Therefore, the marginal pdf of X is:
= x(∞) + (∞\(^2\))/2 - x(0) - (\(0^2\))/2
= ∞ + (∞\(^2\))/2 - 0 - 0
= ∞ + (∞\(^2\))/2
The result is infinity, which means that the marginal pdf of X does not converge to a finite value.
This indicates that X does not have a well-defined marginal pdf.
Now let's find the marginal pdf of Y.
To find the marginal pdf of Y, we need to integrate the joint pdf f(x,y) over the variable X, keeping Y constant.
∫[0 to ∞] (x+y) dx
We integrate the function x+y with respect to x, treating y as a constant. The limits of integration are from 0 to positive infinity, as mentioned in the question.
Integrating the function x+y with respect to x, we get:
= (\(x^2\))/2 + xy |[0 to ∞]
Evaluating the integral at the limits of integration:
= (∞^2)/2 + ∞y - (\(0^2\))/2 - 0y
Since (∞) is not a finite value, we consider it as a limit.
Similarly, \((0^2)/2\) equals 0.
Therefore, the marginal pdf of Y is:
= (∞^2)/2 + ∞y - 0 - 0y
= (∞^2)/2 + ∞y
The result is infinity, which means that the marginal pdf of Y does not converge to a finite value.
This indicates that Y does not have a well-defined marginal pdf.
In summary, both X and Y do not have well-defined marginal pdfs due to the integration of the joint pdf resulting in infinity.
Learn more about integration from this link:
https://brainly.com/question/12231722
#SPJ11
Complete Question - Let X and Y have joint pdf f(x, y) = 4e^-2(x + y); 0 < x < infinity, 0 < y < infinity, and zero otherwise. Find the CDF of W = X + Y. Find the joint pdf of U = X/Y and V = X. Find the marginal pdf of U.
The fundamental question addressed by the correlational method is
a. "Does variable A cause variable B?"
b. "How is a control group influenced by the absence of an independent variable?"
c. "What impact does random assignment have on psychological behavior?"
d. "Are two or more variables related in some systematic way?"
The fundamental question addressed by the correlational method is whether two or more variables are related in some systematic way. So the correct option is D.
Correlational method is a research technique used to explore the relationship between two or more variables. In this method, researchers collect data on the variables of interest and analyze their patterns of association. The fundamental question addressed by the correlational method is whether two or more variables are related in some systematic way. This means that researchers are interested in exploring whether changes in one variable are associated with changes in another variable.
For instance, a researcher may be interested in exploring the relationship between stress and job performance. The researcher may collect data on the levels of stress and job performance in a sample of employees and then use statistical analysis to determine if there is a systematic relationship between the two variables. If the results show that higher levels of stress are associated with lower levels of job performance, then the researcher can conclude that there is a negative correlation between the two variables.
It is important to note that correlation does not imply causation. While a correlation between two variables indicates that they are related, it does not necessarily mean that changes in one variable are causing changes in the other variable. Therefore, researchers must be cautious when interpreting correlational data and should consider other factors that may be influencing the relationship between variables.
Therefore, the fundamental question addressed by the correlational method is whether two or more variables are related in some systematic way, and researchers must be cautious when interpreting correlational data and should consider other factors that may be influencing the relationship between variables.
To learn more about correlational method here:
brainly.com/question/28476621#
#SPJ11
200 σ j=1 2j( j 3) describe the steps to evaluate the summation. what is the sum?
The sum of the equation is = 5494000.
What does summation mean in math?The outcome of adding numbers or quantities mathematically is a summation, often known as a sum. A summation always has an even number of terms in it. There may be just two terms, or there may be 100, 1000, or even a million. Some summations include an infinite number of terms.
Briefing:Distribute 2j to (j+3).
Rewrite the summation as the sum of two individual summations.
Evaluate each summation using properties or formulas from the lesson.
The lower index is 1, so any properties can be used.
The sum is 5,494,000.
Calculation according to the statement:\(\sum_{j=1}^{200} 2 j(j+3)\)
simplifying them we get:
\(\sum_{j=1}^{200} 2 j^{2}+6 j\)
Split the summation into smaller summations that fit the summation rules.
\(\sum_{j=1}^{200} 2 j^{2}+6 j=2 \sum_{j=1}^{200} j^{2}+6 \sum_{j=1}^{200} j\)
\(\text { Evaluate } 2 \sum_{j=1}^{200} j^{2}\)
The formula for the summation of a polynomial with degree 2
is:
\(\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}\)
Substitute the values into the formula and make sure to multiply by the front term.
\((2)$$\left(\frac{200(200+1)(2 \cdot 200+1)}{6}\right)$$\)
we get: 5373400
Evaluating same as above : \(6 \sum_{j=1}^{200} j\)
we get: 120600
Add the results of the summations.
5373400 + 120600
= 5494000
The sum of the equation is = 5494000.
To know more about summations visit:
https://brainly.com/question/16679150
#SPJ4
Jenny left her house at 8:00 AM and went to school at a speed of 2 2/3 mph her brother Jim left the house 4 minutes later and went to the same school. What must his speed be if he wants to keep the same distance between his sister and himself?
Answer:
2 and 2/3 mph
Step-by-step explanation:
The computation of the speed when he wants to keep the same distance is shown below:
Given that
Jenny left her house at 8:00AM
Went for a school at a speed of 2 and 2/3 mph
And, her brother left the house minutes later
So here the speed would be the same i.e. 2 and 2/3 mph
explain why it is possible to generate categorical variables from continuous data but not possible to obtain continuous data from categorical variables.
Generate categorical variables from continuous data by defining categories and assigning values, but you cannot obtain continuous data from categorical variables due to the loss of precision during the conversion process.
The reason why it is possible to generate categorical variables from continuous data, but not possible to obtain continuous data from categorical variables is due to the inherent nature of each type of variable.
To generate categorical variables from continuous data, you can follow these steps:
1. Define categories or groups based on a specific criterion. For example, dividing people into "short", "medium", and "tall" based on their heights.
2. Assign the continuous data values to the appropriate categories based on the defined criterion. For example, people with height less than 5 feet are considered "short", between 5 and 6 feet as "medium", and above 6 feet as "tall".
However, obtaining continuous data from categorical variables is not possible because categorical data does not have the same level of precision or granularity as continuous data. For instance, if you only know that someone is "tall," you cannot determine their exact height, as the information is lost when converting continuous data to categorical data.
for such more question on categorical variables
https://brainly.com/question/14559783
#SPJ11
evaluate r sin3 (4t) dt
Integral of r sin^3(4t) dt is -(3r/16)cos(4t) - (r/48)cos(12t) + C.
To evaluate the integral of r sin^3(4t) dt, follow these steps:
1: Rewrite the integral using the power-reduction formula for sin^3(x): sin^3(x) = (3sin(x) - sin(3x))/4
Integral(r sin^3(4t) dt) = Integral(r(3sin(4t) - sin(12t))/4 dt)
2: Distribute the r/4 term:
Integral(r sin^3(4t) dt) = Integral((3r/4)sin(4t) dt - (r/4)sin(12t) dt)
3: Evaluate each term separately:
Integral((3r/4)sin(4t) dt) = -(3r/16)cos(4t) + C1
Integral(-(r/4)sin(12t) dt) = -(r/48)cos(12t) + C2
4: Add the two results and combine the constants:
Integral(r sin^3(4t) dt) = -(3r/16)cos(4t) - (r/48)cos(12t) + C
Where C = C1 + C2 is the combined constant of integration.
Learn more about power-reduction integral:https://brainly.com/question/30894405
#SPJ11
WRITE THE EQUATION, IN THE FORM y=mx + b, that represents the line shown on the graph.
Answer:
y = 3/2x - 2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
Slope Formula: \(m=\frac{y_2-y_1}{x_2-x_1}\)
Slope-Intercept Form: y = mx + b
m - slope b - y-interceptStep-by-step explanation:
Step 1: Define
Find points from graph.
y-intercept (0, -2)
Random Point (2, 1)
Step 2: Find slope m
Substitute [slope formula]: \(m=\frac{1+2}{2-0}\)Add/Subtract: \(m=\frac{3}{2}\)Step 3: Write equation
Substitute into General Form
y = 3/2x - 2
PLEASE HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
all integers greater than zero
Step-by-step explanation:
As it makes most sense to the pattern
Pleassssse mark brainliest
Complete the explicit formula for the sequence.
42, 47, 52, 57, 62, ...
Answer:
Step-by-step explanation:
67,72..
What is the GCF (Greatest Common Factor) of 2 and 8?
2
Step-by-step explanation:
2 can go into 2 one time, and 2 can go into 8 four times. You can't have anything over 2 so 2 is the GCF.
In mid-2015 the u.s. population was about 321 million. the national debt was well over $18 trillion. in millions of dollars, the debt was $18,151,998. how much did each american owe in mid-2015? report your answer in thousands of dollars rounded to the nearest whole number.
Based on the population of the United States and the national debt, the amount each American owed was $57,700
How much did Americans owe in mid-2015?In mid-205, the United States was more than $18 trillion in debt.
The amount the each American will owe from the debt is:
= 18,521,998,000,000 / 321,000,000
Solving gives:
= $57,700
Find out more on the United States national debt at https://brainly.com/question/2273627
#SPJ4
Given secant of theta is equal to the square root of 6 over 2 comma what is cos?
The value of cos θ is equal to 1/3 when sec θ= √6/2.
Since we are given the value of secant of theta, we can use the relationship between secant and cosine to find the value of cosine of theta.
Let's start by recalling the definitions of secant and cosine functions. The secant of an angle is defined as the reciprocal of the cosine of that angle.
In other words, secθ = 1/cosθ
Conversely, the cosine of an angle is defined as the reciprocal of the secant of that angle.
cosθ = 1/secθ
We are given that secθ= √6/2
We can use this value to find cosθ= 1/secθ
cosθ = 1 / (√6/2)
To simplify this expression, we can multiply both the numerator and denominator by 2/sqrt(6).
cosθ = ((2/√6) / (√6/2) * (2/√6))
cosθ = (2/√6) / 1
cosθ = (2/√6 * √6/√6)
cosθ = 2/6 = 1/3
Therefore, the value of cosθ is equal to 1/3 when secθ = sqrt(6)/2.
For more such questions on cos θ visit:
https://brainly.com/question/21867305
#SPJ8